2 resultados para reduces sodium uptake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD66b is a member of the carcinoembryonic antigen family, which mediates the adhesion between neutrophils and to endothelial cells. Allergen-specific immunotherapy is widely used to treat allergic diseases, and the molecular mechanisms underlying this therapy are poorly understood. The present work was undertaken to analyze A) the in vitro effect of allergens and immunotherapy on cell-surface CD66b expression of neutrophils from patients with allergic asthma and rhinitis and B) the in vivo effect of immunotherapy on cell-surface CD66b expression of neutrophils from nasal lavage fluid during the spring season. Myeloperoxidase expression and activity was also analyzed in nasal lavage fluid as a general marker of neutrophil activation. RESULTS CD66b cell-surface expression is upregulated in vitro in response to allergens, and significantly reduced by immunotherapy (p<0.001). Myeloperoxidase activity in nasal lavage fluid was also significantly reduced by immunotherapy, as were the neutrophil cell-surface expression of CD66b and myeloperoxidase (p<0.001). Interestingly, CD66b expression was higher in neutrophils from nasal lavage fluid than those from peripheral blood, and immunotherapy reduced the number of CD66+MPO+ cells in nasal lavage fluid. Thus, immunotherapy positive effects might, at least in part, be mediated by the negative regulation of the CD66b and myeloperoxidase activity in human neutrophils.