4 resultados para predictive algorithm
Resumo:
Background. The use of hospital discharge administrative data (HDAD) has been recommended for automating, improving, even substituting, population-based cancer registries. The frequency of false positive and false negative cases recommends local validation. Methods. The aim of this study was to detect newly diagnosed, false positive and false negative cases of cancer from hospital discharge claims, using four Spanish population-based cancer registries as the gold standard. Prostate cancer was used as a case study. Results. A total of 2286 incident cases of prostate cancer registered in 2000 were used for validation. In the most sensitive algorithm (that using five diagnostic codes), estimates for Sensitivity ranged from 14.5% (CI95% 10.3-19.6) to 45.7% (CI95% 41.4-50.1). In the most predictive algorithm (that using five diagnostic and five surgical codes) Positive Predictive Value estimates ranged from 55.9% (CI95% 42.4-68.8) to 74.3% (CI95% 67.0-80.6). The most frequent reason for false positive cases was the number of prevalent cases inadequately considered as newly diagnosed cancers, ranging from 61.1% to 82.3% of false positive cases. The most frequent reason for false negative cases was related to the number of cases not attended in hospital settings. In this case, figures ranged from 34.4% to 69.7% of false negative cases, in the most predictive algorithm. Conclusions. HDAD might be a helpful tool for cancer registries to reach their goals. The findings suggest that, for automating cancer registries, algorithms combining diagnoses and procedures are the best option. However, for cancer surveillance purposes, in those cancers like prostate cancer in which care is not only hospital-based, combining inpatient and outpatient information will be required.
Resumo:
BACKGROUND & AIMS Hy's Law, which states that hepatocellular drug-induced liver injury (DILI) with jaundice indicates a serious reaction, is used widely to determine risk for acute liver failure (ALF). We aimed to optimize the definition of Hy's Law and to develop a model for predicting ALF in patients with DILI. METHODS We collected data from 771 patients with DILI (805 episodes) from the Spanish DILI registry, from April 1994 through August 2012. We analyzed data collected at DILI recognition and at the time of peak levels of alanine aminotransferase (ALT) and total bilirubin (TBL). RESULTS Of the 771 patients with DILI, 32 developed ALF. Hepatocellular injury, female sex, high levels of TBL, and a high ratio of aspartate aminotransferase (AST):ALT were independent risk factors for ALF. We compared 3 ways to use Hy's Law to predict which patients would develop ALF; all included TBL greater than 2-fold the upper limit of normal (×ULN) and either ALT level greater than 3 × ULN, a ratio (R) value (ALT × ULN/alkaline phosphatase × ULN) of 5 or greater, or a new ratio (nR) value (ALT or AST, whichever produced the highest ×ULN/ alkaline phosphatase × ULN value) of 5 or greater. At recognition of DILI, the R- and nR-based models identified patients who developed ALF with 67% and 63% specificity, respectively, whereas use of only ALT level identified them with 44% specificity. However, the level of ALT and the nR model each identified patients who developed ALF with 90% sensitivity, whereas the R criteria identified them with 83% sensitivity. An equal number of patients who did and did not develop ALF had alkaline phosphatase levels greater than 2 × ULN. An algorithm based on AST level greater than 17.3 × ULN, TBL greater than 6.6 × ULN, and AST:ALT greater than 1.5 identified patients who developed ALF with 82% specificity and 80% sensitivity. CONCLUSIONS When applied at DILI recognition, the nR criteria for Hy's Law provides the best balance of sensitivity and specificity whereas our new composite algorithm provides additional specificity in predicting the ultimate development of ALF.
Resumo:
This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p<0.011; r(2)>0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.
Resumo:
There has been a high local recurrence rate in rectal cancer. Besides improvements in surgical techniques, both neoadjuvant short-course radiotherapy and long-course chemoradiation improve oncological results. Approximately 40-60% of rectal cancer patients treated with neoadjuvant chemoradiation achieve some degree of pathologic response. However, there is no effective method of predicting which patients will respond to neoadjuvant treatment. Recent studies have evaluated the potential of genetic biomarkers to predict outcome in locally advanced rectal adenocarcinoma treated with neoadjuvant chemoradiation. The articles produced by the PubMed search were reviewed for those specifically addressing a genetic profile's ability to predict response to neoadjuvant treatment in rectal cancer. Although tissue gene microarray profiling has led to promising data in cancer, to date, none of the identified signatures or molecular markers in locally advanced rectal cancer has been successfully validated as a diagnostic or prognostic tool applicable to routine clinical practice.