15 resultados para polymerase chain reaction restriction fragment length polymorphism
Resumo:
OBJECTIVES To evaluate the advantages of cytology and PCR of high-risk human papilloma virus (PCR HR-HPV) infection in biopsy-derived diagnosis of high-grade squamous intraepithelial lesions (HSIL = AIN2/AIN3) in HIV-positive men having sex with men (MSM). METHODS This is a single-centered study conducted between May 2010 and May 2014 in patients (n = 201, mean age 37 years) recruited from our outpatient clinic. Samples of anal canal mucosa were taken into liquid medium for PCR HPV analysis and for cytology. Anoscopy was performed for histology evaluation. RESULTS Anoscopy showed 33.8% were normal, 47.8% low-grade squamous intraepithelial lesions (LSIL), and 18.4% HSIL; 80.2% had HR-HPV. PCR of HR-HPV had greater sensitivity than did cytology (88.8% vs. 75.7%) in HSIL screening, with similar positive (PPV) and negative predictive value (NPV) of 20.3 vs. 22.9 and 89.7 vs. 88.1, respectively. Combining both tests increased the sensitivity and NPV of HSIL diagnosis to 100%. Correlation of cytology vs. histology was, generally, very low and PCR of HR-HPV vs. histology was non-existent (<0.2) or low (<0.4). Area under the receiver operating characteristics (AUROC) curve analysis of cytology and PCR HR-HPV for the diagnosis of HSIL was poor (<0.6). Multivariate regression analysis showed protective factors against HSIL were: viral suppression (OR: 0.312; 95%CI: 0.099-0.984), and/or syphilis infection (OR: 0.193; 95%CI: 0.045-0.827). HSIL risk was associated with HPV-68 genotype (OR: 20.1; 95%CI: 2.04-197.82). CONCLUSIONS When cytology and PCR HR-HPV findings are normal, the diagnosis of pre-malignant HSIL can be reliably ruled-out in HIV-positive patients. HPV suppression with treatment protects against the appearance of HSIL.
Resumo:
The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.
Resumo:
Background. During the last few years, PCR-based methods have been developed to simplify and reduce the time required for genotyping Mycobacterium tuberculosis (MTB) by standard approaches based on IS6110-Restriction Fragment Length Polymorphism (RFLP). Of these, MIRU-12-VNTR (Mycobacterial interspersed repetitive units- variable number of tandem repeats) (MIRU-12) has been considered a good alternative. Nevertheless, some limitations and discrepancies with RFLP, which are minimized if the technique is complemented with spoligotyping, have been found. Recently, a new version of MIRU-VNTR targeting 15 loci (MIRU-15) has been proposed to improve the MIRU-12 format. Results. We evaluated the new MIRU-15 tool in two different samples. First, we analyzed the same convenience sample that had been used to evaluate MIRU-12 in a previous study, and the new 15-loci version offered higher discriminatory power (Hunter-Gaston discriminatory index [HGDI]: 0.995 vs 0.978; 34.4% of clustered cases vs 57.5%) and better correlation (full or high correlation with RFLP for 82% of the clusters vs 47%). Second, we evaluated MIRU-15 on a population-based sample and, once again, good correlation with the RFLP clustering data was observed (for 83% of the RFLP clusters). To understand the meaning of the discrepancies still found between MIRU-15 and RFLP, we analyzed the epidemiological data for the clustered patients. In most cases, splitting of RFLP-clustered patients by MIRU-15 occurred for those without epidemiological links, and RFLP-clustered patients with epidemiological links were also clustered by MIRU-15, suggesting a good epidemiological background for clustering defined by MIRU-15. Conclusion. The data obtained by MIRU-15 suggest that the new design is very efficient at assigning clusters confirmed by epidemiological data. If we add this to the speed with which it provides results, MIRU-15 could be considered a suitable tool for real-time genotyping.
Resumo:
Clonally complex infections by Mycobacterium tuberculosis are progressively more accepted. Studies of their dimension in epidemiological scenarios where the infective pressure is not high are scarce. Our study systematically searched for clonally complex infections (mixed infections by more than one strain and simultaneous presence of clonal variants) by applying mycobacterial interspersed repetitive-unit (MIRU)-variable-number tandem-repeat (VNTR) analysis to M. tuberculosis isolates from two population-based samples of respiratory (703 cases) and respiratory-extrapulmonary (R+E) tuberculosis (TB) cases (71 cases) in a context of moderate TB incidence. Clonally complex infections were found in 11 (1.6%) of the respiratory TB cases and in 10 (14.1%) of those with R+E TB. Among the 21 cases with clonally complex TB, 9 were infected by 2 independent strains and the remaining 12 showed the simultaneous presence of 2 to 3 clonal variants. For the 10 R+E TB cases with clonally complex infections, compartmentalization (different compositions of strains/clonal variants in independent infected sites) was found in 9 of them. All the strains/clonal variants were also genotyped by IS6110-based restriction fragment length polymorphism analysis, which split two MIRU-defined clonal variants, although in general, it showed a lower discriminatory power to identify the clonal heterogeneity revealed by MIRU-VNTR analysis. The comparative analysis of IS6110 insertion sites between coinfecting clonal variants showed differences in the genes coding for a cutinase, a PPE family protein, and two conserved hypothetical proteins. Diagnostic delay, existence of previous TB, risk for overexposure, and clustered/orphan status of the involved strains were analyzed to propose possible explanations for the cases with clonally complex infections. Our study characterizes in detail all the clonally complex infections by M. tuberculosis found in a systematic survey and contributes to the characterization that these phenomena can be found to an extent higher than expected, even in an unselected population-based sample lacking high infective pressure.
Resumo:
Under certain circumstances, it is possible to identify clonal variants of Mycobacterium tuberculosis infecting a single patient, probably as a result of subtle genetic rearrangements in part of the bacillary population. We systematically searched for these microevolution events in a different context, namely, recent transmission chains. We studied the clustered cases identified using a population-based universal molecular epidemiology strategy over a 5-year period. Clonal variants of the reference strain defining the cluster were found in 9 (12%) of the 74 clusters identified after the genotyping of 612 M. tuberculosis isolates by IS6110 restriction fragment length polymorphism analysis and mycobacterial interspersed repetitive units-variable-number tandem repeat typing. Clusters with microevolution events were epidemiologically supported and involved 4 to 9 cases diagnosed over a 1- to 5-year period. The IS6110 insertion sites from 16 representative isolates of reference and microevolved variants were mapped by ligation-mediated PCR in order to characterize the genetic background involved in microevolution. Both intragenic and intergenic IS6110 locations resulted from these microevolution events. Among those cases of IS6110 locations in intergenic regions which could have an effect on the regulation of adjacent genes, we identified the overexpression of cytochrome P450 in one microevolved variant using quantitative real-time reverse transcription-PCR. Our results help to define the frequency with which microevolution can be expected in M. tuberculosis transmission chains. They provide a snapshot of the genetic background of these subtle rearrangements and identify an event in which IS6110-mediated microevolution in an isogenic background has functional consequences.
Resumo:
BACKGROUND. The Beijing lineage of Mycobacterium tuberculosis is causing concern due to its global distribution and its involvement in severe outbreaks. Studies focused on this lineage are mainly restricted to geographical settings where its prevalence is high, whereas those in other areas are scarce. In this study, we analyze Beijing isolates in the Mediterranean area, where this lineage is not prevalent and is mainly associated with immigrant cases. RESULTS. Only 1% (N = 26) of the isolates from two population-based studies in Spain corresponded to Beijing strains, most of which were pan-susceptible and from Peruvian and Ecuadorian patients. Restriction fragment length polymorphism typing with the insertion sequence IS6110 identified three small clusters (2-3 cases). Mycobacterial interspersed repetitive unit-variable number tandem repeat typing (MIRU-15) offered low discriminatory power, requiring the introduction of five additional loci. A selection of the Beijing isolates identified in the Spanish sample, together with a sample of Beijing strains from Italy, to broaden the analysis context in the Mediterranean area, were assayed in an infection model with THP-1 cells. A wide range of intracellular growth rates was observed with only two isolates showing an increased intracellular replication, in both cases associated with contained production of TNF-alpha. No correlation was observed between virulence and the Beijing phylogenetic group, clustered/orphan status, or resistance. The Beijing strain responsible for extensive spread on Gran Canaria Island was also identified in Madrid, but did not lead to secondary cases and did not show high infectivity in the infection model. CONCLUSIONS. The Beijing lineage in our area is a non-homogeneous family, with only certain highly virulent representatives. The specific characterization of Beijing isolates in different settings could help us to accurately identify the virulent representatives before making general assumptions about this lineage.
Resumo:
BACKGROUND. The phenomenon of misdiagnosing tuberculosis (TB) by laboratory cross-contamination when culturing Mycobacterium tuberculosis (MTB) has been widely reported and it has an obvious clinical, therapeutic and social impact. The final confirmation of a cross-contamination event requires the molecular identification of the same MTB strain cultured from both the potential source of the contamination and from the false-positive candidate. The molecular tool usually applied in this context is IS6110-RFLP which takes a long time to provide an answer, usually longer than is acceptable for microbiologists and clinicians to make decisions. Our purpose in this study is to evaluate a novel PCR-based method, MIRU-VNTR as an alternative to assure a rapid and optimized analysis of cross-contamination alerts. RESULTS. MIRU-VNTR was prospectively compared with IS6110-RFLP for clarifying 19 alerts of false positivity from other laboratories. MIRU-VNTR highly correlated with IS6110-RFLP, reduced the response time by 27 days and clarified six alerts unresolved by RFLP. Additionally, MIRU-VNTR revealed complex situations such as contamination events involving polyclonal isolates and a false-positive case due to the simultaneous cross-contamination from two independent sources. CONCLUSION. Unlike standard RFLP-based genotyping, MIRU-VNTR i) could help reduce the impact of a false positive diagnosis of TB, ii) increased the number of events that could be solved and iii) revealed the complexity of some cross-contamination events that could not be dissected by IS6110-RFLP.
Resumo:
BACKGROUND The prevalence of genotypes of the 677C>T polymorphism for the MTHFR gene varies among humans. In previous studies, we found changes in the genotypic frequencies of this polymorphism in populations of different ages, suggesting that this could be caused by an increase in the intake of folate and multivitamins by women during the periconceptional period. The aim was to analyze changes in the allelic frequencies of this polymorphism in a Spanish population, including samples from spontaneous abortions (SA). METHODS A total of 1305 subjects born in the 20th century were genotyped for the 677C>T polymorphism using allele specific real-time PCR with Taqman probes. A section of our population (n = 276) born in 1980-1989 was compared with fetal samples (n = 344) from SA of unknown etiology from the same period. RESULTS An increase in the frequency of the T allele (0.38 vs 0.47; p < 0.001) and of the TT genotype (0.14 vs 0.24; p < 0.001) in subjects born in the last quarter of the century was observed. In the 1980-1989 period, the results show that the frequency of the wild type genotype (CC) is about tenfold lower in the SA samples than in the controls (0.03 vs 0.33; p < 0.001) and that the frequency of the TT genotype increases in the controls (0.19 to 0.27) and in the SA samples (0.20 to 0.33 (p < 0.01)); r = 0.98. CONCLUSION Selection in favor of the T allele has been detected. This selection could be due to the increased fetal viability in early stages of embryonic development, as is deduced by the increase of mutants in both living and SA populations.
Resumo:
INTRODUCTION: The objective was to investigate the potential implication of the IL18 gene promoter polymorphisms in the susceptibility to giant-cell arteritis GCA). METHODS: In total, 212 patients diagnosed with biopsy-proven GCA were included in this study. DNA from patients and matched controls was obtained from peripheral blood. Samples were genotyped for the IL18-137 G>C (rs187238), the IL18-607 C>A (rs1946518), and the IL18-1297 T>C (rs360719) gene polymorphisms with polymerase chain reaction, by using a predesigned TaqMan allele discrimination assay. RESULTS: No significant association between the IL18-137 G>C polymorphism and GCA was found. However, the IL18 -607 allele A was significantly increased in GCA patients compared with controls (47.8% versus 40.9% in patients and controls respectively; P = 0.02; OR, 1.32; 95% CI, 1.04 to 1.69). It was due to an increased frequency of homozygosity for the IL18 -607 A/A genotype in patients with GCA (20.4%) compared with controls (13.4%) (IL18 -607 A/A versus IL18 -607 A/C plus IL18 -607 C/C genotypes: P = 0.04; OR, 1.59; 95% CI, 1.02 to 2.46). Also, the IL18-1297 allele C was significantly increased in GCA patients (30.7%) compared with controls (23.0%) (P = 0.003; OR, 1.48; 95% CI, 1.13 to 1.95). In this regard, an increased susceptibility to GCA was observed in individuals carrying the IL18-1297 C/C or the IL18-1297 C/T genotypes compared with those carrying the IL18-1297 T/T genotype (IL18-1297 C/C plus IL18-1297 T/C versus IL18-1297 T/T genotype in GCA patients compared with controls: P = 0.005; OR, 1.61; 95% CI, 1.15 to 2.25). We also found an additive effect of the IL18 -1297 and -607 polymorphisms with TLR4 Asp299Gly polymorphism. The OR for GCA was 1.95 for combinations of genotypes with one or two risk alleles, whereas carriers of three or more risk alleles have an OR of 3.7. CONCLUSIONS: Our results show for the first time an implication of IL18 gene-promoter polymorphisms in the susceptibility to biopsy-proven GCA. In addition, an additive effect between the associated IL18 and TLR4 genetic variants was observed.
Resumo:
INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
Resumo:
A new oligochromatographic assay, Speed-Oligo Novel Influenza A H1N1, was designed and optimized for the specific detection of the 2009 influenza A H1N1 virus. The assay is based on a PCR method coupled to detection of PCR products by means of a dipstick device. The target sequence is a 103-bp fragment within the hemagglutinin gene. The analytical sensitivity of the new assay was measured with serial dilutions of a plasmid that contained the target sequence, and we determined that down to one copy per reaction of the plasmid was reliably detected. Diagnostic performance was assessed with 103 RNAs from suspected cases (40 positive and 63 negative results) previously analyzed with a reference real-time PCR technique. All positive cases were confirmed, and no false-positive results were detected with the new assay. No cross-reactions were observed when other viral strains or clinical samples with other respiratory viruses were tested. According to these results, this new assay has 100% sensitivity and specificity. The turnaround time for the whole procedure was 140 min. The assay may be especially useful for the specific detection of 2009 H1N1 virus in laboratories not equipped with real-time PCR instruments
Resumo:
BACKGROUND. Several lines of evidence suggest that chemokines and cytokines play an important role in the inflammatory development and progression of systemic lupus erythematosus. The aim of this study was to evaluate the relevance of functional genetic variations of RANTES, IL-8, IL-1alpha, and MCP-1 for systemic lupus erythematosus. METHODS. The study was conducted on 500 SLE patients and 481 ethnically matched healthy controls. Genotyping of polymorphisms in the RANTES, IL-8, IL-1alpha, and MCP-1 genes were performed using a real-time polymerase chain reaction (PCR) system with pre-developed TaqMan allelic discrimination assay. RESULTS. No significant differences between SLE patients and healthy controls were observed when comparing genotype, allele or haplotype frequencies of the RANTES, IL-8, IL-1alpha, and MCP-1 polymorphisms. In addition, no evidence for association with clinical sub-features of SLE was found. CONCLUSION. These results suggest that the tested functional variation of RANTES, IL-8, IL-1alpha, and MCP-1 genes do not confer a relevant role in the susceptibility or severity of SLE in the Spanish population.
Resumo:
The recognition of pathogen-derived structures by C-type lectins and the chemotactic activity mediated by the CCL2/CCR2 axis are critical steps in determining the host immune response to fungi. The present study was designed to investigate whether the presence of single nucleotide polymorphisms (SNPs) within DC-SIGN, Dectin-1, Dectin-2, CCL2 and CCR2 genes influence the risk of developing Invasive Pulmonary Aspergillosis (IPA). Twenty-seven SNPs were selected using a hybrid functional/tagging approach and genotyped in 182 haematological patients, fifty-seven of them diagnosed with proven or probable IPA according to the 2008 EORTC/MSG criteria. Association analysis revealed that carriers of the Dectin-1(rs3901533 T/T) and Dectin-1(rs7309123 G/G) genotypes and DC-SIGN(rs4804800 G), DC-SIGN(rs11465384 T), DC-SIGN(7248637 A) and DC-SIGN(7252229 C) alleles had a significantly increased risk of IPA infection (OR = 5.59 95%CI 1.37-22.77; OR = 4.91 95%CI 1.52-15.89; OR = 2.75 95%CI 1.27-5.95; OR = 2.70 95%CI 1.24-5.90; OR = 2.39 95%CI 1.09-5.22 and OR = 2.05 95%CI 1.00-4.22, respectively). There was also a significantly increased frequency of galactomannan positivity among patients carrying the Dectin-1(rs3901533_T) allele and Dectin-1(rs7309123_G/G) genotype. In addition, healthy individuals with this latter genotype showed a significantly decreased level of Dectin-1 mRNA expression compared to C-allele carriers, suggesting a role of the Dectin-1(rs7309123) polymorphism in determining the levels of Dectin-1 and, consequently, the level of susceptibility to IPA infection. SNP-SNP interaction (epistasis) analysis revealed significant interactions models including SNPs in Dectin-1, Dectin-2, CCL2 and CCR2 genes, with synergistic genetic effects. Although these results need to be further validated in larger cohorts, they suggest that Dectin-1, DC-SIGN, Dectin-2, CCL2 and CCR2 genetic variants influence the risk of IPA infection and might be useful in developing a risk-adapted prophylaxis.
Resumo:
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsorption in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.
Resumo:
A total of 1,021 extended-spectrum-β-lactamase-producing Escherichia coli (ESBLEC) isolates obtained in 2006 during a Spanish national survey conducted in 44 hospitals were analyzed for the presence of the O25b:H4-B2-ST131 (sequence type 131) clonal group. Overall, 195 (19%) O25b-ST131 isolates were detected, with prevalence rates ranging from 0% to 52% per hospital. Molecular characterization of 130 representative O25b-ST131 isolates showed that 96 (74%) were positive for CTX-M-15, 15 (12%) for CTX-M-14, 9 (7%) for SHV-12, 6 (5%) for CTX-M-9, 5 (4%) for CTX-M-32, and 1 (0.7%) each for CTX-M-3 and the new ESBL enzyme CTX-M-103. The 130 O25b-ST131 isolates exhibited relatively high virulence scores (mean, 14.4 virulence genes). Although the virulence profiles of the O25b-ST131 isolates were fairly homogeneous, they could be classified into four main virotypes based on the presence or absence of four distinctive virulence genes: virotypes A (22%) (afa FM955459 positive, iroN negative, ibeA negative, sat positive or negative), B (31%) (afa FM955459 negative, iroN positive, ibeA negative, sat positive or negative), C (32%) (afa FM955459 negative, iroN negative, ibeA negative, sat positive), and D (13%) (afa FM955459 negative, iroN positive or negative, ibeA positive, sat positive or negative). The four virotypes were also identified in other countries, with virotype C being overrepresented internationally. Correspondingly, an analysis of XbaI macrorestriction profiles revealed four major clusters, which were largely virotype specific. Certain epidemiological and clinical features corresponded with the virotype. Statistically significant virotype-specific associations included, for virotype B, older age and a lower frequency of infection (versus colonization), for virotype C, a higher frequency of infection, and for virotype D, younger age and community-acquired infections. In isolates of the O25b:H4-B2-ST131 clonal group, these findings uniquely define four main virotypes, which are internationally distributed, correspond with pulsed-field gel electrophoresis (PFGE) profiles, and exhibit distinctive clinical-epidemiological associations.