12 resultados para lipid peroxidation (LPO)
Resumo:
Introduction. Fibromyalgia is a chronic pain syndrome with unknown etiology. Recent studies have shown some evidence demonstrating that oxidative stress may have a role in the pathophysiology of fibromyalgia. However, it is still not clear whether oxidative stress is the cause or the effect of the abnormalities documented in fibromyalgia. Furthermore, the role of mitochondria in the redox imbalance reported in fibromyalgia also is controversial. We undertook this study to investigate the role of mitochondrial dysfunction, oxidative stress, and mitophagy in fibromyalgia. Methods. We studied 20 patients (2 male, 18 female patients) from the database of the Sevillian Fibromyalgia Association and 10 healthy controls. We evaluated mitochondrial function in blood mononuclear cells from fibromyalgia patients measuring, coenzyme Q10 levels with high-performance liquid chromatography (HPLC), and mitochondrial membrane potential with flow cytometry. Oxidative stress was determined by measuring mitochondrial superoxide production with MitoSOX™ and lipid peroxidation in blood mononuclear cells and plasma from fibromyalgia patients. Autophagy activation was evaluated by quantifying the fluorescence intensity of LysoTracker™ Red staining of blood mononuclear cells. Mitophagy was confirmed by measuring citrate synthase activity and electron microscopy examination of blood mononuclear cells. Results. We found reduced levels of coenzyme Q10, decreased mitochondrial membrane potential, increased levels of mitochondrial superoxide in blood mononuclear cells, and increased levels of lipid peroxidation in both blood mononuclear cells and plasma from fibromyalgia patients. Mitochondrial dysfunction was also associated with increased expression of autophagic genes and the elimination of dysfunctional mitochondria with mitophagy. Conclusions. These findings may support the role of oxidative stress and mitophagy in the pathophysiology of fibromyalgia.
Resumo:
INTRODUCTION In the critically ill patient, there is a continuous production of reactive oxygen species (ROS) that need to be neutralized to prevent oxidative stress (OS). Quantitatively speaking, the glutathione system (GSH) is the most important anti-oxidant endogenous defense. To increase it, glutamine supplementation has been shown to be effective by protecting against the oxidative damage and reducing the morbimortality. OBJECTIVE To assess the effect of adding an alanylglutamine dipeptide to PN on lipid peroxidation lipidica and glutathione metabolism, as well as its relationship with morbidity in critically ill patients. METHODS Determination through spectrophotometry techniques of glutathione peroxidase, glutathione reductase, total glutathione, and maloniladdehyde at admission adn after seven days of hospitalization at the Intensive Care Unit (ICU) in 20 patients older than 18 years on parenteral nutrition therapy. RESULTS The group of patients receiving parenteral nutrition with glutamine supplementation had significant increases in total glutathione (42.35+/-13 vs 55.29+/-12 micromol/l; p<0.05) and the enzymatic activity of glutathione peroxidasa (470+/-195 vs 705+/-214 micromol/l; p<0.05) within one week of nutritional therapy, whereas the group on conventional parenteral nutrition did not show significant changes of any of the parameters studied (p>0.05). However, both mortality and ICU stay were not different between the study group, whereas the severity (assessed by the SOFA score) was lower in the group of patients receiving glutamine (SOFA 5+/-2 vs 8+/-1.8; p<0.05). CONCLUSIONS Glutamine intake in critically ill patients improves the antioxidant defenses, which leads to lower lipid peroxidation and lower morbidity during admission at the ICU.
Resumo:
INTRODUCTION The quality of fats and oils used for frying is as important as the quality of the final product since during the frying process oxidization by-products are formed and become part of the diet, being potentially harmful for the consumers' health. OBJECTIVE To determine the effects of thermo-oxidised fats and oils on the oxidization of plasma lipoproteins inexperimental rats. METHODS Determination by means of spectrophotometric techniques of those substances reacting with thiobarbituric acid and total cholesterol (enzymatic method) in the sera of 40 Wistar rats that consumed crude thermooxidised oils and fats with different levels of malonil aldehyde(MDA) for 30 days. RESULTS The group of rats receiving a diet with thermooxidised oils and fats experienced significant increases in MDA plasma levels throughout the study period, lipid peroxidation being higher with increasing MDA content (p < 0.05) regardless the type of fat compound consumed. However, those rats receiving crude oils and fats kept plasma levels of lipidic peroxides without significant changes throughout the experimental period (p > 0.05). By contrast, cholesterol levels increased towards the end of the experimental period in both the rats consuming crude fats and those consuming thermo-oxidised fats (p < 0.05). CONCLUSIONS Consumption of oils and fats submitted to repeat thermal heating has an influence on plasma lipidic peroxidation, which becomes higher with increasing number of heating processes applied, so that it would advisable not to abuse of reheating the oils used for frying foods.
Resumo:
The aim of this study was to examine the responses of uric acid, antioxidant defences and pro-oxidant variables after a high-fat meal. Twenty-five healthy persons without criteria for the metabolic syndrome, underwent a high-fat meal with Supracal (60 g fat). Measurements were made at baseline and 3 h after the meal of TAG, uric acid, HDL-cholesterol, total proteins and oxidative stress. Following the high-fat meal, we detected a significant increase in pro-oxidative variables and a decrease in antioxidative variables. The uric acid concentrations were significantly lower after the high-fat meal and the reduction correlated significantly with the oxidative stress variables. The inverse relation between reduced uric acid and increased carbonylated proteins remained in multiple regression analysis. We conclude that uric acid is a powerful antioxidant and its reduction following a high-fat meal may be related with its acute antioxidative action.
Resumo:
Plant-based whole foods provide thousands of bioactive metabolites to the human diet that reduce the risk of developing chronic diseases. β-Caryophyllene (CAR) is a common constituent of the essential oil of numerous plants, vegetables, fruits and medicinal herbs, and has been used as a flavouring agent since the 1930 s. Here, we report the antioxidant activity of CAR, its protective effect on liver fibrosis and its inhibitory capacity on hepatic stellate cell (HSC) activation. CAR was tested for the inhibition of lipid peroxidation and as a free radical scavenger. CAR had higher inhibitory capacity on lipid peroxidation than probucol, α-humulene and α-tocopherol. Also, CAR showed high scavenging activities against hydroxyl radical and superoxide anion. The activity of 5-lipoxygenase, an enzyme that actively participates in fibrogenesis, was significantly inhibited by CAR. Carbon tetrachloride-treated rats received CAR at 2, 20 and 200 mg/kg. CAR significantly improved liver structure, and reduced fibrosis and the expression of Col1a1, Tgfb1 and Timp1 genes. Oxidative stress was used to establish a model of HSC activation with overproduction of extracellular matrix proteins. CAR (1 and 10 μm) increased cell viability and significantly reduced the expression of fibrotic marker genes. CAR, a sesquiterpene present in numerous plants and foods, is as a natural antioxidant that reduces carbon tetrachloride-mediated liver fibrosis and inhibits hepatic cell activation.
Resumo:
Objective To examine the association between serum concentrations of total cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol, triglycerides, apolipoprotein A-I (apoA), apolipoprotein B and the incidence of colorectal cancer (CRC). Design Nested case–control study. Setting The study was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC), a cohort of more than 520 000 participants from 10 western European countries. Participants 1238 cases of incident CRC, which developed after enrolment into the cohort, were matched with 1238 controls for age, sex, centre, follow-up time, time of blood collection and fasting status. Main outcome measures Serum concentrations were quantitatively determined by colorimetric and turbidimetric methods. Dietary and lifestyle data were obtained from questionnaires. Conditional logistic regression models were used to estimate incidence rate ratios (RRs) and 95% CIs which were adjusted for height, weight, smoking habits, physical activity, education, consumption of fruit, vegetables, meat, fish, alcohol, fibre and energy. Results After adjustments, the concentrations of HDL and apoA were inversely associated with the risk of colon cancer (RR for 1 SD increase of 16.6 mg/dl in HDL and 32.0 mg/dl in apoA of 0.78 (95% CI 0.68 to 0.89) and 0.82 (95% CI 0.72 to 0.94), respectively). No association was observed with the risk of rectal cancer. Additional adjustment for biomarkers of systemic inflammation, insulin resistance and oxidative stress or exclusion of the first 2 years of follow-up did not influence the association between HDL and risk of colon cancer. Conclusions These findings show that high concentrations of serum HDL are associated with a decreased risk of colon cancer. The mechanism behind this association needs further elucidation.
Resumo:
BACKGROUND The present study was determined the influence of physical activity and dietary habits on lipid profile, blood pressure (BP) and body mass index (BMI) in subjects with metabolic syndrome (MS). AIMS Identify the relationship between physical activity and proper nutrition and the probability of suffering from myocardial infarction (MI). METHODS Hundred chronically ill with MS who were active and followed a healthy diet were classified as compliant, while the remaining subjects were classified as non-compliant. RESULTS The compliant subjects show lower BMI values (30.8±4.9 vs 32.5±4.6), as well as lower levels of triacylglycerol (130.4±48.2 vs 242.1±90.1), total cholesterol (193.5±39 vs 220.2±52.3) and low-density lipoprotein cholesterol (105.2±38.3 vs 139.2±45). They show higher values in terms of high-density lipoprotein cholesterol levels (62.2±20.1 vs 36.6±15.3), with statistically significant differences. In terms of both systolic and diastolic pressure, no differences were revealed between the groups; however, those who maintain proper dietary habits show lower systolic blood pressure levels than the inactive subjects. The probability of suffering from MI greatly increases among the group of non-compliant subjects. CONCLUSIONS Our results demonstrate how performing aerobic physical activity and following an individualized, Mediterranean diet significantly reduces MS indicators and the chances of suffering from MI.
Resumo:
BACKGROUND Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Resumo:
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.
Resumo:
The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.
Resumo:
INTRODUCTION Rilpivirine (RPV) has a better lipid profile than efavirenz (EFV) in naïve patients (1). Switching to RPV may be convenient for many patients, while maintaining a good immunovirological control (2). The aim of this study was to analyze lipid changes in HIV-patients at 24 weeks after switching to Eviplera® (emtricitabine/RPV/tenofovir disoproxil fumarate [FTC/RPV/TDF]). MATERIALS AND METHODS Retrospective, multicentre study of a cohort of asymptomatic HIV-patients who switched from a regimen based on 2 nucleoside reverse transcriptase inhibitors (NRTI)+protease inhibitor (PI)/non nucleoside reverse transcriptase inhibitor (NNRTI) or ritonavir boosted PI monotherapy to Eviplera® during February-December, 2013; all had undetectable HIV viral load for ≥3 months prior to switching. Patients with previous failures on antiretroviral therapy (ART) including TDF and/or FTC/3TC, with genotype tests showing resistance to components of Eviplera®, or who had changed the third drug of the ART during the study period were excluded. Changes in lipid profile and cardiovascular risk (CVR), and efficacy and safety at 24 weeks were analyzed. RESULTS Among 305 patients included in the study, 298 were analyzed (7 cases were excluded due to lack of data). Men 81.2%, mean age 44.5 years, 75.8% of HIV sexually transmitted. 233 (78.2%) patients switched from a regimen based on 2 NRTI+NNRTI (90.5% EFV/FTC/TDF). The most frequent reasons for switching were central nervous system (CNS) adverse events (31.0%), convenience (27.6%) and metabolic disorders (23.2%). At this time, 293 patients have reached 24 weeks: 281 (95.9%) have continued Eviplera®, 6 stopped it (3 adverse events, 2 virologic failures, 1 discontinuation) and 6 have been lost to follow up. Lipid profiles of 283 cases were available at 24 weeks and mean (mg/dL) baseline vs 24 weeks are: total cholesterol (193 vs 169; p=0.0001), HDL-c (49 vs 45; p=0.0001), LDL-c (114 vs 103; p=0.001), tryglycerides (158 vs 115; p=0.0001), total cholesterol to HDL-c ratio (4.2 vs 4.1; p=0.3). CVR decreased (8.7 vs 7.5%; p= 0.0001). CD4 counts were similar to baseline (653 vs 674 cells/µL; p=0.08), and 274 (96.8%) patients maintained viral suppression. CONCLUSIONS At 24 weeks after switching to Eviplera®, lipid profile and CVR improved while maintaining a good immunovirological control. Most subjects switched to Eviplera® from a regimen based on NNRTI, mainly EFV/FTC/TDF. CNS adverse events, convenience and metabolic disorders were the most frequent reasons for switching.
Resumo:
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.