3 resultados para glutaredoxins, disease resistance, flower development, glutathionylation
Resumo:
BACKGROUND: Anemia is a common condition in CKD that has been identified as a cardiovascular (CV) risk factor in end-stage renal disease, constituting a predictor of low survival. The aim of this study was to define the onset of anemia of renal origin and its association with the evolution of kidney disease and clinical outcomes in stage 3 CKD (CKD-3). METHODS: This epidemiological, prospective, multicenter, 3-year study included 439 CKD-3 patients. The origin of nephropathy and comorbidity (Charlson score: 3.2) were recorded. The clinical characteristics of patients that developed anemia according to EBPG guidelines were compared with those that did not, followed by multivariate logistic regression, Kaplan-Meier curves and ROC curves to investigate factors associated with the development of renal anemia. RESULTS: During the 36-month follow-up period, 50% reached CKD-4 or 5, and approximately 35% were diagnosed with anemia (85% of renal origin). The probability of developing renal anemia was 0.12, 0.20 and 0.25 at 1, 2 and 3 years, respectively. Patients that developed anemia were mainly men (72% anemic vs. 69% non-anemic). The mean age was 68 vs. 65.5 years and baseline proteinuria was 0.94 vs. 0.62 g/24h (anemic vs. non anemic, respectively). Baseline MDRD values were 36 vs. 40 mL/min and albumin 4.1 vs. 4.3 g/dL; reduction in MDRD was greater in those that developed anemia (6.8 vs. 1.6 mL/min/1.73 m2/3 years). These patients progressed earlier to CKD-4 or 5 (18 vs. 28 months), with a higher proportion of hospitalizations (31 vs. 16%), major CV events (16 vs. 7%), and higher mortality (10 vs. 6.6%) than those without anemia. Multivariate logistic regression indicated a significant association between baseline hemoglobin (OR=0.35; 95% CI: 0.24-0.28), glomerular filtration rate (OR=0.96; 95% CI: 0.93-0.99), female (OR=0.19; 95% CI: 0.10-0.40) and the development of renal anemia. CONCLUSIONS: Renal anemia is associated with a more rapid evolution to CKD-4, and a higher risk of CV events and hospitalization in non-dialysis-dependent CKD patients. This suggests that special attention should be paid to anemic CKD-3 patients.
Resumo:
Obesity and its associated disorders are a major public health concern. Although obesity has been mainly related with perturbations of the balance between food intake and energy expenditure, other factors must nevertheless be considered. Recent insight suggests that an altered composition and diversity of gut microbiota could play an important role in the development of metabolic disorders. This review discusses research aimed at understanding the role of gut microbiota in the pathogenesis of obesity and type 2 diabetes mellitus (TDM2). The establishment of gut microbiota is dependent on the type of birth. With effect from this point, gut microbiota remain quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understand these changes is important to predict diseases and develop therapies. A new theory suggests that gut microbiota contribute to the regulation of energy homeostasis, provoking the development of an impairment in energy homeostasis and causing metabolic diseases, such as insulin resistance or TDM2. The metabolic endotoxemia, modifications in the secretion of incretins and butyrate production might explain the influence of the microbiota in these diseases.
Resumo:
Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.