3 resultados para gamma ferric oxide


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The prevalence of anemia across studies on patients with inflammatory bowel disease (IBD) is high (30%). Both iron deficiency (ID) and anemia of chronic disease contribute most to the development of anemia in IBD. The prevalence of ID is even higher (45%). Anemia and ID negatively impact the patient's quality of life. Therefore, together with an adequate control of disease activity, iron replacement therapy should start as soon as anemia or ID is detected to attain a normal hemoglobin (Hb) and iron status. Many patients will respond to oral iron, but compliance may be poor, whereas intravenous (i.v.) compounds are safe, provide a faster Hb increase and iron store repletion, and presents a lower rate of treatment discontinuation. Absolute indications for i.v. iron treatment should include severe anemia, intolerance or inappropriate response to oral iron, severe intestinal disease activity, or use of an erythropoietic stimulating agent. Four different products are principally used in clinical practice, which differ in their pharmacokinetic properties and safety profiles: iron gluconate and iron sucrose (lower single doses), and iron dextran and ferric carboxymaltose (higher single doses). After the initial resolution of anemia and the repletion of iron stores, the patient's hematological and iron parameters should be carefully and periodically monitored, and maintenance iron treatment should be provided as required. New i.v. preparations that allow for giving 1000-1500 mg in a single session, thus facilitating patient management, provide an excellent tool to prevent or treat anemia and ID in this patient population, which in turn avoids allogeneic blood transfusion and improves their quality of life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-gamma-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-gamma treatment in human melanoma cell lines. METHODS Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan(R) Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-gamma-treated cells. RESULTS Altered IFN-gamma mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-alpha led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-gamma treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-alpha treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-gamma in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-gamma signaling pathway. CONCLUSION We observed two distinct mechanisms of loss of IFN-gamma inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-gamma signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence of IFN-gamma-mediated HLA class I expression in ESTDAB-159 cells is due to epigenetic blocking of IFN-regulatory factor 1 (IRF-1) transactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies in animal models and humans suggest anti-inflammatory roles on the N acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.