5 resultados para fuzzy-basis membership functions
Resumo:
Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.
Resumo:
BACKGROUND Extreme weight conditions (EWC) groups along a continuum may share some biological risk factors and intermediate neurocognitive phenotypes. A core cognitive trait in EWC appears to be executive dysfunction, with a focus on decision making, response inhibition and cognitive flexibility. Differences between individuals in these areas are likely to contribute to the differences in vulnerability to EWC. The aim of the study was to investigate whether there is a common pattern of executive dysfunction in EWC while comparing anorexia nervosa patients (AN), obese subjects (OB) and healthy eating/weight controls (HC). METHODS Thirty five AN patients, fifty two OB and one hundred thirty seven HC were compared using the Wisconsin Card Sorting Test (WCST); Stroop Color and Word Test (SCWT); and Iowa Gambling Task (IGT). All participants were female, aged between 18 and 60 years. RESULTS There was a significant difference in IGT score (F(1.79); p<.001), with AN and OB groups showing the poorest performance compared to HC. On the WCST, AN and OB made significantly more errors than controls (F(25.73); p<.001), and had significantly fewer correct responses (F(2.71); p<.001). Post hoc analysis revealed that the two clinical groups were not significantly different from each other. Finally, OB showed a significant reduced performance in the inhibition response measured with the Stroop test (F(5.11); p<.001) compared with both AN and HC. CONCLUSIONS These findings suggest that EWC subjects (namely AN and OB) have similar dysfunctional executive profile that may play a role in the development and maintenance of such disorders.
Resumo:
Animal studies point to an implication of the endocannabinoid system on executive functions. In humans, several studies have suggested an association between acute or chronic use of exogenous cannabinoids (Δ9-tetrahydrocannabinol) and executive impairments. However, to date, no published reports establish the relationship between endocannabinoids, as biomarkers of the cannabinoid neurotransmission system, and executive functioning in humans. The aim of the present study was to explore the association between circulating levels of plasma endocannabinoids N-arachidonoylethanolamine (AEA) and 2-Arachidonoylglycerol (2-AG) and executive functions (decision making, response inhibition and cognitive flexibility) in healthy subjects. One hundred and fifty seven subjects were included and assessed with the Wisconsin Card Sorting Test; Stroop Color and Word Test; and Iowa Gambling Task. All participants were female, aged between 18 and 60 years and spoke Spanish as their first language. Results showed a negative correlation between 2-AG and cognitive flexibility performance (r = -.37; p<.05). A positive correlation was found between AEA concentrations and both cognitive flexibility (r = .59; p<.05) and decision making performance (r = .23; P<.05). There was no significant correlation between either 2-AG (r = -.17) or AEA (r = -.08) concentrations and inhibition response. These results show, in humans, a relevant modulation of the endocannabinoid system on prefrontal-dependent cognitive functioning. The present study might have significant implications for the underlying executive alterations described in some psychiatric disorders currently associated with endocannabinoids deregulation (namely drug abuse/dependence, depression, obesity and eating disorders). Understanding the neurobiology of their dysexecutive profile might certainly contribute to the development of new treatments and pharmacological approaches.
Resumo:
The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.
Resumo:
The prefrontal (PFC) and orbitofrontal cortex (OFC) appear to be associated with both executive functions and olfaction. However, there is little data relating olfactory processing and executive functions in humans. The present study aimed at exploring the role of olfaction on executive functioning, making a distinction between primary and more cognitive aspects of olfaction. Three executive tasks of similar difficulty were used. One was used to assess hot executive functions (Iowa Gambling Task-IGT), and two as a measure of cold executive functioning (Stroop Colour and Word Test-SCWT and Wisconsin Card Sorting Test-WCST). Sixty two healthy participants were included: 31 with normosmia and 31 with hyposmia. Olfactory abilities were assessed using the ''Sniffin' Sticks'' test and the olfactory threshold, odour discrimination and odour identification measures were obtained. All participants were female, aged between 18 and 60. Results showed that participants with hyposmia displayed worse performance in decision making (IGT; Cohen's-d = 0.91) and cognitive flexibility (WCST; Cohen's-d between 0.54 and 0.68) compared to those with normosmia. Multiple regression adjusted by the covariates participants' age and education level showed a positive association between odour identification and the cognitive inhibition response (SCWT-interference; Beta = 0.29; p = .034). The odour discrimination capacity was not a predictor of the cognitive executive performance. Our results suggest that both hot and cold executive functions seem to be associated with higher-order olfactory functioning in humans. These results robustly support the hypothesis that olfaction and executive measures have a common neural substrate in PFC and OFC, and suggest that olfaction might be a reliable cognitive marker in psychiatric and neurologic disorders.