3 resultados para expected value of information
Resumo:
OBJECTIVE: To explore the potential of deep HIV-1 sequencing for adding clinically relevant information relative to viral population sequencing in heavily pre-treated HIV-1-infected subjects. METHODS: In a proof-of-concept study, deep sequencing was compared to population sequencing in HIV-1-infected individuals with previous triple-class virological failure who also developed virologic failure to deep salvage therapy including, at least, darunavir, tipranavir, etravirine or raltegravir. Viral susceptibility was inferred before salvage therapy initiation and at virological failure using deep and population sequencing genotypes interpreted with the HIVdb, Rega and ANRS algorithms. The threshold level for mutant detection with deep sequencing was 1%. RESULTS: 7 subjects with previous exposure to a median of 15 antiretrovirals during a median of 13 years were included. Deep salvage therapy included darunavir, tipranavir, etravirine or raltegravir in 4, 2, 2 and 5 subjects, respectively. Self-reported treatment adherence was adequate in 4 and partial in 2; one individual underwent treatment interruption during follow-up. Deep sequencing detected all mutations found by population sequencing and identified additional resistance mutations in all but one individual, predominantly after virological failure to deep salvage therapy. Additional genotypic information led to consistent decreases in predicted susceptibility to etravirine, efavirenz, nucleoside reverse transcriptase inhibitors and indinavir in 2, 1, 2 and 1 subject, respectively. Deep sequencing data did not consistently modify the susceptibility predictions achieved with population sequencing for darunavir, tipranavir or raltegravir. CONCLUSIONS: In this subset of heavily pre-treated individuals, deep sequencing improved the assessment of genotypic resistance to etravirine, but did not consistently provide additional information on darunavir, tipranavir or raltegravir susceptibility. These data may inform the design of future studies addressing the clinical value of minority drug-resistant variants in treatment-experienced subjects.
Resumo:
Background. The use of hospital discharge administrative data (HDAD) has been recommended for automating, improving, even substituting, population-based cancer registries. The frequency of false positive and false negative cases recommends local validation. Methods. The aim of this study was to detect newly diagnosed, false positive and false negative cases of cancer from hospital discharge claims, using four Spanish population-based cancer registries as the gold standard. Prostate cancer was used as a case study. Results. A total of 2286 incident cases of prostate cancer registered in 2000 were used for validation. In the most sensitive algorithm (that using five diagnostic codes), estimates for Sensitivity ranged from 14.5% (CI95% 10.3-19.6) to 45.7% (CI95% 41.4-50.1). In the most predictive algorithm (that using five diagnostic and five surgical codes) Positive Predictive Value estimates ranged from 55.9% (CI95% 42.4-68.8) to 74.3% (CI95% 67.0-80.6). The most frequent reason for false positive cases was the number of prevalent cases inadequately considered as newly diagnosed cancers, ranging from 61.1% to 82.3% of false positive cases. The most frequent reason for false negative cases was related to the number of cases not attended in hospital settings. In this case, figures ranged from 34.4% to 69.7% of false negative cases, in the most predictive algorithm. Conclusions. HDAD might be a helpful tool for cancer registries to reach their goals. The findings suggest that, for automating cancer registries, algorithms combining diagnoses and procedures are the best option. However, for cancer surveillance purposes, in those cancers like prostate cancer in which care is not only hospital-based, combining inpatient and outpatient information will be required.
Resumo:
Background: We aim to investigate the possibility of using 18F-positron emission tomography/computer tomography (PET-CT) to predict the histopathologic response in locally advanced rectal cancer (LARC) treated with preoperative chemoradiation (CRT). Methods: The study included 50 patients with LARC treated with preoperative CRT. All patients were evaluated by PET-CT before and after CRT, and results were compared to histopathologic response quantified by tumour regression grade (patients with TRG 1-2 being defined as responders and patients with grade 3-5 as non-responders). Furthermore, the predictive value of metabolic imaging for pathologic complete response (ypCR) was investigated. Results: Responders and non-responders showed statistically significant differences according to Mandard's criteria for maximum standardized uptake value (SUVmax) before and after CRT with a specificity of 76,6% and a positive predictive value of 66,7%. Furthermore, SUVmax values after CRT were able to differentiate patients with ypCR with a sensitivity of 63% and a specificity of 74,4% (positive predictive value 41,2% and negative predictive value 87,9%); This rather low sensitivity and specificity determined that PET-CT was only able to distinguish 7 cases of ypCR from a total of 11 patients. Conclusions: We conclude that 18-F PET-CT performed five to seven weeks after the end of CRT can visualise functional tumour response in LARC. In contrast, metabolic imaging with 18-F PET-CT is not able to predict patients with ypCR accurately