2 resultados para erythrocyte membrane cytoskeleton
Resumo:
Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.
Resumo:
Circulating tumor cells (CTCs) are frequently associated with epithelial-mesenchymal transition (EMT).The objective of this study was to detect EMT phenotype through Vimentin (VIM) and Slug expression in cytokeratin (CK)-negative CTCs in non-metastatic breast cancer patients and to determine the importance of EGFR in the EMT phenomenon. In CK-negative CTCs samples, both VIM and Slug markers were co-expressed in the most of patients. Among patients EGFR+, half of them were positive for these EMT markers. Furthermore, after a systemic treatment 68% of patients switched from CK- to CK+ CTCs. In our experimental model we found that activation of EGFR signaling by its ligand on MCF-7 cells is sufficient to increase EMT phenotypes, to inhibit apoptotic events and to induce the loss of CK expression. The simultaneous detection of both EGFR and EMT markers in CTCs may improve prognostic or predictive information in patients with operable breast cancer.