2 resultados para dynamic barrier
Resumo:
INTRODUCTION Hemodynamic resuscitation should be aimed at achieving not only adequate cardiac output but also sufficient mean arterial pressure (MAP) to guarantee adequate tissue perfusion pressure. Since the arterial pressure response to volume expansion (VE) depends on arterial tone, knowing whether a patient is preload-dependent provides only a partial solution to the problem. The objective of this study was to assess the ability of a functional evaluation of arterial tone by dynamic arterial elastance (Ea(dyn)), defined as the pulse pressure variation (PPV) to stroke volume variation (SVV) ratio, to predict the hemodynamic response in MAP to fluid administration in hypotensive, preload-dependent patients with acute circulatory failure. METHODS We performed a prospective clinical study in an adult medical/surgical intensive care unit in a tertiary care teaching hospital, including 25 patients with controlled mechanical ventilation who were monitored with the Vigileo(®) monitor, for whom the decision to give fluids was made because of the presence of acute circulatory failure, including arterial hypotension (MAP ≤65 mmHg or systolic arterial pressure <90 mmHg) and preserved preload responsiveness condition, defined as a SVV value ≥10%. RESULTS Before fluid infusion, Ea(dyn) was significantly different between MAP responders (MAP increase ≥15% after VE) and MAP nonresponders. VE-induced increases in MAP were strongly correlated with baseline Ea(dyn) (r(2) = 0.83; P < 0.0001). The only predictor of MAP increase was Ea(dyn) (area under the curve, 0.986 ± 0.02; 95% confidence interval (CI), 0.84-1). A baseline Ea(dyn) value >0.89 predicted a MAP increase after fluid administration with a sensitivity of 93.75% (95% CI, 69.8%-99.8%) and a specificity of 100% (95% CI, 66.4%-100%). CONCLUSIONS Functional assessment of arterial tone by Ea(dyn), measured as the PVV to SVV ratio, predicted arterial pressure response after volume loading in hypotensive, preload-dependent patients under controlled mechanical ventilation.
Resumo:
Enteral nutrition is a technique that even though it was used in times immemorial, in the last 25 years has suffered a considerable development, from being considered a secondary therapeutic weapon destined only to feed the patient, to occupying an important status that goes beyond the single act of nourishing. The quantitative composition but overall the qualitative one, is object of an interesting argument in which a profile allowing the modulation of certain aspects of the organism response through the supplementation with different nutrients is searched. That includes from the keeping of the intestinal trophism and of the anti-bacteria intestinal barrier, so important to avoid the frightening multiple organ dysfunction, up to the lessening of the Systemic Response Inflammatory Syndrome (SRIS), going through the immuno-modulative feeding concepts, specific-feeding, pharmaco-nutrient or eco-nutrition. In this new dynamic not only certain nutrients such as glutamine, arginine, nucleotides, omega-3 fatty acids and many antioxidants have acquired importance, but also the manipulation of other molecules of a non- nutritional nature, such as hormones, cytokines and blockers. These aspects that imply passionate ways of investigation for the future are born from the better knowledge that is being acquired from such a severe pathophysiology processes such as sepsis and the organism response before fast and severe aggression; therefore, the modulation of that response through changes in the quantitative and qualitative formulas composition is being attempted.