2 resultados para diet analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In contrast to some extensively examined food mutagens, for example, aflatoxins, N-nitrosamines and heterocyclic amines, some other food contaminants, in particular polycyclic aromatic hydrocarbons (PAH) and other aromatic compounds, have received less attention. Therefore, exploring the relationships between dietary habits and the levels of biomarkers related to exposure to aromatic compounds is highly relevant. We have investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort the association between dietary items (food groups and nutrients) and aromatic DNA adducts and 4-aminobiphenyl-Hb adducts. Both types of adducts are biomarkers of carcinogen exposure and possibly of cancer risk, and were measured, respectively, in leucocytes and erythrocytes of 1086 (DNA adducts) and 190 (Hb adducts) non-smokers. An inverse, statistically significant, association has been found between DNA adduct levels and dietary fibre intake (P = 0·02), vitamin E (P = 0·04) and alcohol (P = 0·03) but not with other nutrients or food groups. Also, an inverse association between fibre and fruit intake, and BMI and 4-aminobiphenyl-Hb adducts (P = 0·03, 0·04, and 0·03 respectively) was observed. After multivariate regression analysis these inverse correlations remained statistically significant, except for the correlation adducts v. fruit intake. The present study suggests that fibre intake in the usual range can modify the level of DNA or Hb aromatic adducts, but such role seems to be quantitatively modest. Fibres could reduce the formation of DNA adducts in different manners, by diluting potential food mutagens and carcinogens in the gastrointestinal tract, by speeding their transit through the colon and by binding carcinogenic substances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.