2 resultados para cascade of cationic rearrangements
Resumo:
We read with interest the article by Qiu et al (Thorax 2007;62:475–82). In this paper, neutrophils and eosinophils were identified using mouse anti-human neutrophil elastase and anti-eosinophil cationic protein (ECP), both monoclonal antibodies (mAbs). mAbs against ECP have been used to detect total eosinophils, but immunostaining techniques evidenced that the number of ECP+ cells was higher than the number of eosinophils.1 Recent studies show that ECP is not only a distinctive eosinophil protein, but has been found in neutrophils.1–3
Resumo:
Under certain circumstances, it is possible to identify clonal variants of Mycobacterium tuberculosis infecting a single patient, probably as a result of subtle genetic rearrangements in part of the bacillary population. We systematically searched for these microevolution events in a different context, namely, recent transmission chains. We studied the clustered cases identified using a population-based universal molecular epidemiology strategy over a 5-year period. Clonal variants of the reference strain defining the cluster were found in 9 (12%) of the 74 clusters identified after the genotyping of 612 M. tuberculosis isolates by IS6110 restriction fragment length polymorphism analysis and mycobacterial interspersed repetitive units-variable-number tandem repeat typing. Clusters with microevolution events were epidemiologically supported and involved 4 to 9 cases diagnosed over a 1- to 5-year period. The IS6110 insertion sites from 16 representative isolates of reference and microevolved variants were mapped by ligation-mediated PCR in order to characterize the genetic background involved in microevolution. Both intragenic and intergenic IS6110 locations resulted from these microevolution events. Among those cases of IS6110 locations in intergenic regions which could have an effect on the regulation of adjacent genes, we identified the overexpression of cytochrome P450 in one microevolved variant using quantitative real-time reverse transcription-PCR. Our results help to define the frequency with which microevolution can be expected in M. tuberculosis transmission chains. They provide a snapshot of the genetic background of these subtle rearrangements and identify an event in which IS6110-mediated microevolution in an isogenic background has functional consequences.