3 resultados para cadmium telluride magic-sized clusters 2D structures colloidal nanocrystals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under certain circumstances, it is possible to identify clonal variants of Mycobacterium tuberculosis infecting a single patient, probably as a result of subtle genetic rearrangements in part of the bacillary population. We systematically searched for these microevolution events in a different context, namely, recent transmission chains. We studied the clustered cases identified using a population-based universal molecular epidemiology strategy over a 5-year period. Clonal variants of the reference strain defining the cluster were found in 9 (12%) of the 74 clusters identified after the genotyping of 612 M. tuberculosis isolates by IS6110 restriction fragment length polymorphism analysis and mycobacterial interspersed repetitive units-variable-number tandem repeat typing. Clusters with microevolution events were epidemiologically supported and involved 4 to 9 cases diagnosed over a 1- to 5-year period. The IS6110 insertion sites from 16 representative isolates of reference and microevolved variants were mapped by ligation-mediated PCR in order to characterize the genetic background involved in microevolution. Both intragenic and intergenic IS6110 locations resulted from these microevolution events. Among those cases of IS6110 locations in intergenic regions which could have an effect on the regulation of adjacent genes, we identified the overexpression of cytochrome P450 in one microevolved variant using quantitative real-time reverse transcription-PCR. Our results help to define the frequency with which microevolution can be expected in M. tuberculosis transmission chains. They provide a snapshot of the genetic background of these subtle rearrangements and identify an event in which IS6110-mediated microevolution in an isogenic background has functional consequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is scarce data about the importance of phylogroups and virulence factors (VF) in bloodstream infections (BSI) caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBLEC). A prospective multicenter Spanish cohort including 191 cases of BSI due to ESBLEC was studied. Phylogroups and 25 VF genes were investigated by PCR. ESBLEC were classified into clusters according to their virulence profiles. The association of phylogropus, VF, and clusters with epidemiological features were studied using multivariate analysis. Overall, 57.6%, 26.7%, and 15.7% of isolates belonged to A/B1, D and B2 phylogroups, respectively. By multivariate analysis (adjusted OR [95% CI]), virulence cluster C2 was independently associated with urinary tract source (5.05 [0.96-25.48]); cluster C4 with sources other than urinary of biliary tract (2.89 [1.05-7.93]), and cluster C5 with BSI in non-predisposed patients (2.80 [0.99-7.93]). Isolates producing CTX-M-9 group ESBLs and from phylogroup D predominated among cluster C2 and C5, while CTX-M-1 group of ESBL and phylogroup B2 predominantes among C4 isolates. These results suggest that host factors and previous antimicrobial use were more important than phylogroup or specific VF in the occurrence of BSI due to ESBLEC. However, some associations between virulence clusters and some specific epidemiological features were found.