2 resultados para analysis reveals


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures. RESULTS This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. CONCLUSIONS The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND A possible method of finding physiological markers of multiple sclerosis (MS) is the application of EEG quantification (QEEG) of brain activity when the subject is stressed by the demands of a cognitive task. In particular, modulations of the spectral content that take place in the EEG of patients with multiple sclerosis remitting-relapsing (RRMS) and benign multiple sclerosis (BMS) during a visuo-spatial task need to be observed. METHODS The sample consisted of 19 patients with RRMS, 10 with BMS, and 21 control subjects. All patients were free of medication and had not relapsed within the last month. The power spectral density (PSD) of different EEG bands was calculated by Fast-Fourier-Transformation (FFT), those analysed being delta, theta, alpha, beta and gamma. Z-transformation was performed to observe individual profiles in each experimental group for spectral modulations. Lastly, correlation analyses was performed between QEEG values and other variables from participants in the study (age, EDSS, years of evolution and cognitive performance). RESULTS Nearly half (42%) the RRMS patients showed a statistically significant increase of two or more standard deviations (SD) compared to the control mean value for the beta-2 and gamma bands (F = 2.074, p = 0.004). These alterations were localized to the anterior regions of the right hemisphere, and bilaterally to the posterior areas of the scalp. None of the BMS patients or control subjects had values outside the range of +/- 2 SD. There were no significant correlations between these values and the other variables analysed (age, EDSS, years of evolution or behavioural performance). CONCLUSION During the attentional processing, changes in the high EEG spectrum (beta-2 and gamma) in MS patients exhibit physiological alterations that are not normally detected by spontaneous EEG analysis. The different spectral pattern between pathological and controls groups could represent specific changes for the RRMS patients, indicative of compensatory mechanisms or cortical excitatory states representative of some phases during the RRMS course that are not present in the BMS group.