4 resultados para Verification and validation technology
Resumo:
BACKGROUND Identifying individuals at high risk of excess weight gain may help targeting prevention efforts at those at risk of various metabolic diseases associated with weight gain. Our aim was to develop a risk score to identify these individuals and validate it in an external population. METHODS We used lifestyle and nutritional data from 53°758 individuals followed for a median of 5.4 years from six centers of the European Prospective Investigation into Cancer and Nutrition (EPIC) to develop a risk score to predict substantial weight gain (SWG) for the next 5 years (derivation sample). Assuming linear weight gain, SWG was defined as gaining ≥ 10% of baseline weight during follow-up. Proportional hazards models were used to identify significant predictors of SWG separately by EPIC center. Regression coefficients of predictors were pooled using random-effects meta-analysis. Pooled coefficients were used to assign weights to each predictor. The risk score was calculated as a linear combination of the predictors. External validity of the score was evaluated in nine other centers of the EPIC study (validation sample). RESULTS Our final model included age, sex, baseline weight, level of education, baseline smoking, sports activity, alcohol use, and intake of six food groups. The model's discriminatory ability measured by the area under a receiver operating characteristic curve was 0.64 (95% CI = 0.63-0.65) in the derivation sample and 0.57 (95% CI = 0.56-0.58) in the validation sample, with variation between centers. Positive and negative predictive values for the optimal cut-off value of ≥ 200 points were 9% and 96%, respectively. CONCLUSION The present risk score confidently excluded a large proportion of individuals from being at any appreciable risk to develop SWG within the next 5 years. Future studies, however, may attempt to further refine the positive prediction of the score.
Resumo:
BACKGROUND The purpose of the present study is to translate and validate the "Hip and Knee Outcomes Questionnaire", developed in English, into Spanish. The 'Hip and Knee Outcomes Questionnaire is a questionnaire planned to evaluate the impact in quality of life of any problem related to the human musculoskeletal system. 10 scientific associations developed it. METHODS The questionnaire underwent a validated translation/retro-translation process. Patients undergoing primary knee arthroplasty, before and six months postoperative, tested the final version in Spanish. Psychometric properties of feasibility, reliability, validity and sensitivity to change were assessed. Convergent validity with SF-36 and WOMAC questionnaires was evaluated. RESULTS 316 patients were included. Feasibility: a high number of missing items in questions 3, 4 and 5 were observed. The number of patients with a missing item was 171 (51.35%) in the preoperative visit and 139 (44.0%) at the postoperative. Internal validity: revision of coefficients in the item-rest correlation recommended removing question 6 during the preoperative visit (coefficient <0.20). Convergent validity: coefficients of correlation with WOMAC and SF-36 scales confirm the questionnaire's validity. Sensitivity to change: statistically significant differences were found between the mean scores of the first visit compared to the postoperative. CONCLUSION The proposed translation to Spanish of the 'Hip and Knee Questionnaire' is found to be reliable, valid and sensible to changes produced at the clinical practice of patients undergoing primary knee arthroplasty. However, some changes at the completion instructions are recommended. LEVEL OF EVIDENCE Level I. Prognostic study.
Resumo:
The accuracy of the MicroScan WalkAway, BD Phoenix, and Vitek-2 systems for susceptibility testing of quinolones and aminoglycosides against 68 enterobacteria containing qnrB, qnrS, and/or aac(6 ')-Ib-cr was evaluated using reference microdilution. Overall, one very major error (0.09%), 6 major errors (0.52%), and 45 minor errors (3.89%) were noted.
Resumo:
Colorectal cancer is a heterogeneous disease that manifests through diverse clinical scenarios. During many years, our knowledge about the variability of colorectal tumors was limited to the histopathological analysis from which generic classifications associated with different clinical expectations are derived. However, currently we are beginning to understand that under the intense pathological and clinical variability of these tumors there underlies strong genetic and biological heterogeneity. Thus, with the increasing available information of inter-tumor and intra-tumor heterogeneity, the classical pathological approach is being displaced in favor of novel molecular classifications. In the present article, we summarize the most relevant proposals of molecular classifications obtained from the analysis of colorectal tumors using powerful high throughput techniques and devices. We also discuss the role that cancer systems biology may play in the integration and interpretation of the high amount of data generated and the challenges to be addressed in the future development of precision oncology. In addition, we review the current state of implementation of these novel tools in the pathological laboratory and in clinical practice.