2 resultados para Tuberculosis therapy
Resumo:
Early studies in patients with systemic lupus erythematosus (SLE) reported increased incidence of tuberculosis. The tuberculin skin test (TST) is the technique of choice to detect latent tuberculosis infection (LTBI) but has several limitations. OBJECTIVES We compared TST and the newer T.SPOT.TB test to diagnose LTBI in SLE patients. METHODS In this observational cohort study conducted between August 2009 and February 2012, we recruited 92 patients from those attending the SLE clinic of our university hospital. Data recorded were epidemiological and sociodemographic characteristics. Laboratory analyses included TST and T.SPOT.TB tests. RESULTS Of the patients studied, 92% were women with an average age of 42.7 years. Overall, the degree of correlation between the two tests was low (Kappa index = 0.324) but was better in patients not receiving corticosteroids (CTC)/immunosuppressive (IS) therapy (Kappa = 0.436) and in those receiving hydroxychloroquine (Kappa = 0.473). While TST results were adversely affected by those receiving CTC and/or IS drugs (P = 0.021), the T.SPOT.TB results were not. CONCLUSION Although the TST test remains a useful tool for diagnosing LTBI in SLE patients, the T.SPOT.TB test is perhaps better employed when the patient is receiving CTC and/or IS drugs.
Resumo:
Background. During the last few years, PCR-based methods have been developed to simplify and reduce the time required for genotyping Mycobacterium tuberculosis (MTB) by standard approaches based on IS6110-Restriction Fragment Length Polymorphism (RFLP). Of these, MIRU-12-VNTR (Mycobacterial interspersed repetitive units- variable number of tandem repeats) (MIRU-12) has been considered a good alternative. Nevertheless, some limitations and discrepancies with RFLP, which are minimized if the technique is complemented with spoligotyping, have been found. Recently, a new version of MIRU-VNTR targeting 15 loci (MIRU-15) has been proposed to improve the MIRU-12 format. Results. We evaluated the new MIRU-15 tool in two different samples. First, we analyzed the same convenience sample that had been used to evaluate MIRU-12 in a previous study, and the new 15-loci version offered higher discriminatory power (Hunter-Gaston discriminatory index [HGDI]: 0.995 vs 0.978; 34.4% of clustered cases vs 57.5%) and better correlation (full or high correlation with RFLP for 82% of the clusters vs 47%). Second, we evaluated MIRU-15 on a population-based sample and, once again, good correlation with the RFLP clustering data was observed (for 83% of the RFLP clusters). To understand the meaning of the discrepancies still found between MIRU-15 and RFLP, we analyzed the epidemiological data for the clustered patients. In most cases, splitting of RFLP-clustered patients by MIRU-15 occurred for those without epidemiological links, and RFLP-clustered patients with epidemiological links were also clustered by MIRU-15, suggesting a good epidemiological background for clustering defined by MIRU-15. Conclusion. The data obtained by MIRU-15 suggest that the new design is very efficient at assigning clusters confirmed by epidemiological data. If we add this to the speed with which it provides results, MIRU-15 could be considered a suitable tool for real-time genotyping.