4 resultados para Transcriptional variability
Resumo:
The mTOR (mammalian target of rapamycin) signal transduction pathway integrates various signals, regulating ribosome biogenesis and protein synthesis as a function of available energy and amino acids, and assuring an appropriate coupling of cellular proliferation with increases in cell size. In addition, recent evidence has pointed to an interplay between the mTOR and p53 pathways. We investigated the genetic variability of 67 key genes in the mTOR pathway and in genes of the p53 pathway which interact with mTOR. We tested the association of 1,084 tagging SNPs with prostate cancer risk in a study of 815 prostate cancer cases and 1,266 controls nested within the European Prospective Investigation into Cancer and Nutrition (EPIC). We chose the SNPs (n = 11) with the strongest association with risk (p<0.01) and sought to replicate their association in an additional series of 838 prostate cancer cases and 943 controls from EPIC. In the joint analysis of first and second phase two SNPs of the PRKCI gene showed an association with risk of prostate cancer (ORallele = 0.85, 95% CI 0.78–0.94, p = 1.3×10−3 for rs546950 and ORallele = 0.84, 95% CI 0.76–0.93, p = 5.6×10−4 for rs4955720). We confirmed this in a meta-analysis using as replication set the data from the second phase of our study jointly with the first phase of the Cancer Genetic Markers of Susceptibility (CGEMS) project. In conclusion, we found an association with prostate cancer risk for two SNPs belonging to PRKCI, a gene which is frequently overexpressed in various neoplasms, including prostate cancer.
Resumo:
Aquaporin-1 (AQP1) is a water channel that is highly expressed in tissues with rapid O(2) transport. It has been reported that this protein contributes to gas permeation (CO(2), NO and O(2)) through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5' proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl(2)) and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases.
Resumo:
BACKGROUND. Total knee (TKR) and hip (THR) replacement (arthroplasty) are effective surgical procedures that relieve pain, improve patients' quality of life and increase functional capacity. Studies on variations in medical practice usually place the indications for performing these procedures to be highly variable, because surgeons appear to follow different criteria when recommending surgery in patients with different severity levels. We therefore proposed a study to evaluate inter-hospital variability in arthroplasty indication. METHODS. The pre-surgical condition of 1603 patients included was compared by their personal characteristics, clinical situation and self-perceived health status. Patients were asked to complete two health-related quality of life questionnaires: the generic SF-12 (Short Form) and the specific WOMAC (Western Ontario and Mcmaster Universities) scale. The type of patient undergoing primary arthroplasty was similar in the 15 different hospitals evaluated.The variability in baseline WOMAC score between hospitals in THR and TKR indication was described by range, mean and standard deviation (SD), mean and standard deviation weighted by the number of procedures at each hospital, high/low ratio or extremal quotient (EQ5-95), variation coefficient (CV5-95) and weighted variation coefficient (WCV5-95) for 5-95 percentile range. The variability in subjective and objective signs was evaluated using median, range and WCV5-95. The appropriateness of the procedures performed was calculated using a specific threshold proposed by Quintana et al for assessing pain and functional capacity. RESULTS. The variability expressed as WCV5-95 was very low, between 0.05 and 0.11 for all three dimensions on WOMAC scale for both types of procedure in all participating hospitals. The variability in the physical and mental SF-12 components was very low for both types of procedure (0.08 and 0.07 for hip and 0.03 and 0.07 for knee surgery patients). However, a moderate-high variability was detected in subjective-objective signs. Among all the surgeries performed, approximately a quarter of them could be considered to be inappropriate. CONCLUSIONS. A greater inter-hospital variability was observed for objective than for subjective signs for both procedures, suggesting that the differences in clinical criteria followed by surgeons when indicating arthroplasty are the main responsible factors for the variation in surgery rates.
Resumo:
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.