4 resultados para Starch coatings
Resumo:
The use of 1% unmodified rice starch and 1% horse serum instead of 2% soluble starch and 5% serum in Granada medium is described. These components result in a medium of increased stability, preventing spoilage after a few days of storage at room temperature
Resumo:
A quasi-defined medium that supports the growth of Streptococcus agalactiae as pigmented colonies has been developed. The medium contains starch, a peptic digest of albumin, amino acids, nucleosides, vitamins, and salts. The presence of free cysteine, which could be replaced with other sulphur-containing compounds and to a lesser degree by reducing agents, was required for pigment formation.
Resumo:
A methotrexate-containing medium for the detection of beta-hemolytic group B streptococci from clinical specimens on the basis of detection of pigment is described. The medium contained peptone, starch, serum, MgSO4, glucose, pyruvate, methotrexate (as pigment enhancer), phosphate-morpholine-propanesulfonic acid buffer, and selective agents. The recovery of beta-hemolytic group B streptococci was comparable to that obtained with selective broth.
Resumo:
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.