3 resultados para Software Defined Receiver
Resumo:
BACKGROUND Identifying individuals at high risk of excess weight gain may help targeting prevention efforts at those at risk of various metabolic diseases associated with weight gain. Our aim was to develop a risk score to identify these individuals and validate it in an external population. METHODS We used lifestyle and nutritional data from 53°758 individuals followed for a median of 5.4 years from six centers of the European Prospective Investigation into Cancer and Nutrition (EPIC) to develop a risk score to predict substantial weight gain (SWG) for the next 5 years (derivation sample). Assuming linear weight gain, SWG was defined as gaining ≥ 10% of baseline weight during follow-up. Proportional hazards models were used to identify significant predictors of SWG separately by EPIC center. Regression coefficients of predictors were pooled using random-effects meta-analysis. Pooled coefficients were used to assign weights to each predictor. The risk score was calculated as a linear combination of the predictors. External validity of the score was evaluated in nine other centers of the EPIC study (validation sample). RESULTS Our final model included age, sex, baseline weight, level of education, baseline smoking, sports activity, alcohol use, and intake of six food groups. The model's discriminatory ability measured by the area under a receiver operating characteristic curve was 0.64 (95% CI = 0.63-0.65) in the derivation sample and 0.57 (95% CI = 0.56-0.58) in the validation sample, with variation between centers. Positive and negative predictive values for the optimal cut-off value of ≥ 200 points were 9% and 96%, respectively. CONCLUSION The present risk score confidently excluded a large proportion of individuals from being at any appreciable risk to develop SWG within the next 5 years. Future studies, however, may attempt to further refine the positive prediction of the score.
Resumo:
A quasi-defined medium that supports the growth of Streptococcus agalactiae as pigmented colonies has been developed. The medium contains starch, a peptic digest of albumin, amino acids, nucleosides, vitamins, and salts. The presence of free cysteine, which could be replaced with other sulphur-containing compounds and to a lesser degree by reducing agents, was required for pigment formation.
Resumo:
BACKGROUND Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia) have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic) overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown. METHODS AND FINDINGS The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed. CONCLUSIONS These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer.