3 resultados para Sodio - Excreção


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salt sensitivity (SS) is associated with an elevated risk of developing hypertension(HTN) and is an independent risk factor for cardiovascular (CV) morbidity and mortality. Cross-sectional studies have suggested that postmenopausal women are more salt sensitive than premenopausal women. The purpose of the present study was to investigate prospectively the prevalence of SS among healthy premenopausal women and determine whether the loss of ovarian hormones increases SS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the effects of uninephrectomy (UNX) in 6-week-old male and female rats on blood pressure (BP), renal sodium handling, salt sensitivity, oxidative stress, and renal injury over 18 months postsurgery, studying control sham-operated and UNX-operated rats at 6, 12, and 18 months postsurgery, evaluating their renal sodium handling, BP, urinary isoprostanes, N-acetyl-β-D-glucosaminidase, and proteinuria before and after a 2-week high-salt intake period. At 18 months, plasma variables were measured and kidney samples were taken for the analysis of renal morphology and tissue variables. BP was increased at 6 months in male UNX rats versus controls and at 12 and 18 months in both male and female UNX rats and was increased in male versus female UNX groups at 18 months. UNX did not affect water and sodium excretion under basal conditions and after the different test in male and female rats at different ages. However, the renal function curve was shifted to the right in both male and female UNX rats. High-salt intake increased BP in both UNX groups at 6, 12, and 18 months and in the female control group at 18 months, and it increased proteinuria, N-acetyl-β-D-glucosaminidase, and isoprostanes in both UNX groups throughout the study. Renal lesions at 18 months were more severe in male versus female UNX rats. In summary, long-term UNX increased the BP, creatinine, proteinuria, pathological signs of renal injury, and salt sensitivity. Earlier BP elevation was observed and morphological lesions were more severe in male than in female UNX rats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na(+) channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. METHODS AND RESULTS Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na(+) current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. CONCLUSION Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na(+) channel.