3 resultados para Signal sets matched to groups
Resumo:
Objective. To examine the association between pre-diagnostic circulating vitamin D concentration, dietary intake of vitamin D and calcium, and the risk of colorectal cancer in European populations. Design Nested case-control study. Setting. The study was conducted within the EPIC study, a cohort of more than 520 000 participants from 10 western European countries. Participants: 1248 cases of incident colorectal cancer, which developed after enrolment into the cohort, were matched to 1248 controls. Main outcome measures. Circulating vitamin D concentration (25-hydroxy-vitamin-D, 25-(OH)D) was measured by enzyme immunoassay. Dietary and lifestyle data were obtained from questionnaires. Incidence rate ratios and 95% confidence intervals for the risk of colorectal cancer by 25-(OH)D concentration and levels of dietary calcium and vitamin D intake were estimated from multivariate conditional logistic regression models, with adjustment for potential dietary and other confounders. Results. 25-(OH)D concentration showed a strong inverse linear dose-response association with risk of colorectal cancer (P for trend <0.001). Compared with a pre-defined mid-level concentration of 25-(OH)D (50.0-75.0 nmol/l), lower levels were associated with higher colorectal cancer risk (<25.0 nmol/l: incidence rate ratio 1.32 (95% confidence interval 0.87 to 2.01); 25.0-49.9 nmol/l: 1.28 (1.05 to 1.56), and higher concentrations associated with lower risk (75.0-99.9 nmol/l: 0.88 (0.68 to 1.13); ≥100.0 nmol/l: 0.77 (0.56 to 1.06)). In analyses by quintile of 25-(OH)D concentration, patients in the highest quintile had a 40% lower risk of colorectal cancer than did those in the lowest quintile (P<0.001). Subgroup analyses showed a strong association for colon but not rectal cancer (P for heterogeneity=0.048). Greater dietary intake of calcium was associated with a lower colorectal cancer risk. Dietary vitamin D was not associated with disease risk. Findings did not vary by sex and were not altered by corrections for season or month of blood donation. Conclusions The results of this large observational study indicate a strong inverse association between levels of pre-diagnostic 25-(OH)D concentration and risk of colorectal cancer in western European populations. Further randomised trials are needed to assess whether increases in circulating 25-(OH)D concentration can effectively decrease the risk of colorectal cancer.
Resumo:
This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.
Resumo:
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.