5 resultados para Shearing layers of change
Resumo:
Introduction. Critically ill patients suffer from oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS). Although ROS/RNS are constantly produced under normal circumstances, critical illness can drastically increase their production. These patients have reduced plasma and intracellular levels of antioxidants and free electron scavengers or cofactors, and decreased activity of the enzymatic system involved in ROS detoxification. The pro-oxidant/antioxidant balance is of functional relevance during critical illness because it is involved in the pathogenesis of multiple organ failure. In this study the objective was to evaluate the relation between oxidative stress in critically ill patients and antioxidant vitamin intake and severity of illness. Methods. Spectrophotometry was used to measure in plasma the total antioxidant capacity and levels of lipid peroxide, carbonyl group, total protein, bilirubin and uric acid at two time points: at intensive care unit (ICU) admission and on day seven. Daily diet records were kept and compliance with recommended dietary allowance (RDA) of antioxidant vitamins (A, C and E) was assessed. Results. Between admission and day seven in the ICU, significant increases in lipid peroxide and carbonyl group were associated with decreased antioxidant capacity and greater deterioration in Sequential Organ Failure Assessment score. There was significantly greater worsening in oxidative stress parameters in patients who received antioxidant vitamins at below 66% of RDA than in those who received antioxidant vitamins at above 66% of RDA. An antioxidant vitamin intake from 66% to 100% of RDA reduced the risk for worsening oxidative stress by 94% (ods ratio 0.06, 95% confidence interval 0.010 to 0.39), regardless of change in severity of illness (Sequential Organ Failure Assessment score). Conclusion. The critical condition of patients admitted to the ICU is associated with worsening oxidative stress. Intake of antioxidant vitamins below 66% of RDA and alteration in endogenous levels of substances with antioxidant capacity are related to redox imbalance in critical ill patients. Therefore, intake of antioxidant vitamins should be carefully monitored so that it is as close as possible to RDA.
Resumo:
Background: The literature shows how gender mandates contribute to differences in exposure and vulnerability to certain health risk factors. This paper presents the results of a study developed in the south of Spain, where research aimed at understanding men from a gender perspective is still limited. Objective: The aim of this paper is to explore the lay perceptions and meanings ascribed to the idea of masculinity, identifying ways in which gender displays are related to health. Design: The study is based on a mixed-methods data collection strategy typical of qualitative research. We performed a qualitative content analysis focused on manifest and latent content. Results: Our analysis showed that the relationship between masculinity and health was mainly defined with regard to behavioural explanations with an evident performative meaning. With regard to issues such as driving, the use of recreational drugs, aggressive behaviour, sexuality, and body image, important connections were established between manhood acts and health outcomes. Different ways of understanding and performing the male identity also emerged from the results. The findings revealed the implications of these aspects in the processes of change in the identity codes of men and women. Conclusions: The study provides insights into how the category ‘man’ is highly dependent on collective practices and performative acts. Consideration of how males perform manhood acts might be required in guidance on the development of programmes and policies aimed at addressing gender inequalities in health in a particular local context.
Resumo:
The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.
Resumo:
BACKGROUND Migraine is a chronic neurologic disease that can severely affect the patient's quality of life. Although in recent years many randomised studies have been carried out to investigate the effectiveness of acupuncture as a treatment for migraine, it remains a controversial issue. Our aim is to determine whether acupuncture, applied under real conditions of clinical practice in the area of primary healthcare, is more effective than conventional treatment. METHODS/DESIGN The design consists of a pragmatic multi-centre, three-armed randomised controlled trial, complemented with an economic evaluation of the results achieved, comparing the effectiveness of verum acupuncture with sham acupuncture, and with a control group receiving normal care only. Patients eligible for inclusion will be those presenting in general practice with migraine and for whom their General Practitioner (GP) is considering referral for acupuncture. Sampling will be by consecutive selection, and by randomised allocation to the three branches of the study, in a centralised way following a 1:1:1 distribution (verum acupuncture; sham acupuncture; conventional treatment). Secondly, one patient in three will be randomly selected from each of the acupuncture (verum or sham) groups for a brain perfusion study (by single photon emission tomography). The treatment with verum acupuncture will consist of 8 treatment sessions, once a week, at points selected individually by the acupuncturist. The sham acupuncture group will receive 8 sessions, one per week, with treatment being applied at non-acupuncture points in the dorsal and lumbar regions, using the minimal puncture technique. The control group will be given conventional treatment, as will the other two groups. DISCUSSION This trial will contribute to available evidence on acupuncture for the treatment of migraine. The primary endpoint is the difference in the number of days with migraine among the three groups, between the baseline period (the 4 weeks prior to the start of treatment) and the period from weeks 9 to 12. As a secondary aspect, we shall record the index of laterality and the percentage of change in the mean count per pixel in each region of interest measured by the brain perfusion tomography, performed on a subsample of the patients within the real and sham acupuncture groups. TRIAL REGISTRATION Current Controlled Trials ISRCTN98703707.
Resumo:
The retrograde suppression of the synaptic transmission by the endocannabinoid sn-2-arachidonoylglycerol (2-AG) is mediated by the cannabinoid CB1 receptors and requires the elevation of intracellular Ca(2+) and the activation of specific 2-AG synthesizing (i.e., DAGLα) enzymes. However, the anatomical organization of the neuronal substrates that express 2-AG/CB1 signaling system-related molecules associated with selective Ca(2+)-binding proteins (CaBPs) is still unknown. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the expression of the 2-AG/CB1 signaling system (CB1 receptor, DAGLα, MAGL, and FAAH) and the CaBPs calbindin D28k, calretinin, and parvalbumin in the rat hippocampus. CB1, DAGLα, and MAGL labeling was mainly localized in fibers and neuropil, which were differentially organized depending on the hippocampal CaBPs-expressing cells. CB(+) 1 fiber terminals localized in all hippocampal principal cell layers were tightly attached to calbindin(+) cells (granular and pyramidal neurons), and calretinin(+) and parvalbumin(+) interneurons. DAGLα neuropil labeling was selectively found surrounding calbindin(+) principal cells in the dentate gyrus and CA1, and in the calretinin(+) and parvalbumin(+) interneurons in the pyramidal cell layers of the CA1/3 fields. MAGL(+) terminals were only observed around CA1 calbindin(+) pyramidal cells, CA1/3 calretinin(+) interneurons and CA3 parvalbumin(+) interneurons localized in the pyramidal cell layers. Interestingly, calbindin(+) pyramidal cells expressed FAAH specifically in the CA1 field. The identification of anatomically related-neuronal substrates that expressed 2-AG/CB1 signaling system and selective CaBPs should be considered when analyzing the cannabinoid signaling associated with hippocampal functions.