5 resultados para SITE CONTROL
Resumo:
Objective. To examine the association between pre-diagnostic circulating vitamin D concentration, dietary intake of vitamin D and calcium, and the risk of colorectal cancer in European populations. Design Nested case-control study. Setting. The study was conducted within the EPIC study, a cohort of more than 520 000 participants from 10 western European countries. Participants: 1248 cases of incident colorectal cancer, which developed after enrolment into the cohort, were matched to 1248 controls. Main outcome measures. Circulating vitamin D concentration (25-hydroxy-vitamin-D, 25-(OH)D) was measured by enzyme immunoassay. Dietary and lifestyle data were obtained from questionnaires. Incidence rate ratios and 95% confidence intervals for the risk of colorectal cancer by 25-(OH)D concentration and levels of dietary calcium and vitamin D intake were estimated from multivariate conditional logistic regression models, with adjustment for potential dietary and other confounders. Results. 25-(OH)D concentration showed a strong inverse linear dose-response association with risk of colorectal cancer (P for trend <0.001). Compared with a pre-defined mid-level concentration of 25-(OH)D (50.0-75.0 nmol/l), lower levels were associated with higher colorectal cancer risk (<25.0 nmol/l: incidence rate ratio 1.32 (95% confidence interval 0.87 to 2.01); 25.0-49.9 nmol/l: 1.28 (1.05 to 1.56), and higher concentrations associated with lower risk (75.0-99.9 nmol/l: 0.88 (0.68 to 1.13); ≥100.0 nmol/l: 0.77 (0.56 to 1.06)). In analyses by quintile of 25-(OH)D concentration, patients in the highest quintile had a 40% lower risk of colorectal cancer than did those in the lowest quintile (P<0.001). Subgroup analyses showed a strong association for colon but not rectal cancer (P for heterogeneity=0.048). Greater dietary intake of calcium was associated with a lower colorectal cancer risk. Dietary vitamin D was not associated with disease risk. Findings did not vary by sex and were not altered by corrections for season or month of blood donation. Conclusions The results of this large observational study indicate a strong inverse association between levels of pre-diagnostic 25-(OH)D concentration and risk of colorectal cancer in western European populations. Further randomised trials are needed to assess whether increases in circulating 25-(OH)D concentration can effectively decrease the risk of colorectal cancer.
Resumo:
BACKGROUND The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied.
Resumo:
INTRODUCTION The relationship between circulating prolactin and invasive breast cancer has been investigated previously, but the association between prolactin levels and in situ breast cancer risk has received less attention. METHODS We analysed the relationship between pre-diagnostic prolactin levels and the risk of in situ breast cancer overall, and by menopausal status and use of postmenopausal hormone therapy (HT) at blood donation. Conditional logistic regression was used to assess this association in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, including 307 in situ breast cancer cases and their matched control subjects. RESULTS We found a significant positive association between higher circulating prolactin levels and risk of in situ breast cancer among all women [pre-and postmenopausal combined, ORlog2 = 1.35 (95%CI 1.04-1.76), Ptrend = 0.03]. No statistically significant heterogeneity was found between prolactin levels and in situ cancer risk by menopausal status (Phet = 0.98) or baseline HT use (Phet = 0.20), although the observed association was more pronounced among postmenopausal women using HT compared to non-users (Ptrend = 0.06 vs Ptrend = 0.35). In subgroup analyses, the observed positive association was strongest in women diagnosed with in situ breast tumors <4 years compared to ≥4 years after blood donation (Ptrend = 0.01 vs Ptrend = 0.63; Phet = 0.04) and among nulliparous women compared to parous women (Ptrend = 0.03 vs Ptrend = 0.15; Phet = 0.07). CONCLUSIONS Our data extends prior research linking prolactin and invasive breast cancer to the outcome of in situ breast tumours and shows that higher circulating prolactin is associated with increased risk of in situ breast cancer.
Resumo:
BACKGROUND Health-related quality of life (HRQoL) is gaining importance as a valuable outcome measure in oral cancer area. The aim of this study was to assess the general and oral HRQoL of oral and oropharyngeal cancer patients 6 or more months after treatment and compare them with a population free from this disease. METHODS A cross-sectional study was carried out with patients treated for oral cancer at least 6 months post-treatment and a gender and age group matched control group. HRQoL was measured with the 12-Item Short Form Health Survey (SF-12); oral HRQoL (OHRQoL) was evaluated using the Oral Health Impact Profile (OHIP-14) and the Oral Impacts on Daily Performances (OIDP). Multivariable regression models assessed the association between the outcomes (SF-12, OHIP-14 and OIDP) and the exposure (patients versus controls), adjusting for sex, age, social class, functional tooth units and presence of illness. RESULTS For patients (n = 142) and controls (n = 142), 64.1% were males. The mean age was 65.2 (standard deviation (sd): 12.9) years in patients and 67.5 (sd: 13.7) years in controls. Patients had worse SF-12 Physical Component Summary scores than controls even in fully the adjusted model [β-coefficient = -0.11 (95% CI: -5.12-(-0.16)]. The differences in SF-12 Mental Component Summary were not statistically significant. Regarding OHRQoL patients had 11.63 (95% CI: 6.77-20.01) higher odds for the OHIP-14 and 21.26 (95% CI: 11.54-39.13) higher odds for OIDP of being in a worse category of OHRQoL compared to controls in the fully adjusted model. CONCLUSION At least 6 months after treatment, oral cancer patients had worse OHRQoL, worse physical HRQoL and similar psychological HRQoL than the general population.
Resumo:
BACKGROUND Obesity is positively associated with colorectal cancer. Recently, body size subtypes categorised by the prevalence of hyperinsulinaemia have been defined, and metabolically healthy overweight/obese individuals (without hyperinsulinaemia) have been suggested to be at lower risk of cardiovascular disease than their metabolically unhealthy (hyperinsulinaemic) overweight/obese counterparts. Whether similarly variable relationships exist for metabolically defined body size phenotypes and colorectal cancer risk is unknown. METHODS AND FINDINGS The association of metabolically defined body size phenotypes with colorectal cancer was investigated in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Metabolic health/body size phenotypes were defined according to hyperinsulinaemia status using serum concentrations of C-peptide, a marker of insulin secretion. A total of 737 incident colorectal cancer cases and 737 matched controls were divided into tertiles based on the distribution of C-peptide concentration amongst the control population, and participants were classified as metabolically healthy if below the first tertile of C-peptide and metabolically unhealthy if above the first tertile. These metabolic health definitions were then combined with body mass index (BMI) measurements to create four metabolic health/body size phenotype categories: (1) metabolically healthy/normal weight (BMI < 25 kg/m2), (2) metabolically healthy/overweight (BMI ≥ 25 kg/m2), (3) metabolically unhealthy/normal weight (BMI < 25 kg/m2), and (4) metabolically unhealthy/overweight (BMI ≥ 25 kg/m2). Additionally, in separate models, waist circumference measurements (using the International Diabetes Federation cut-points [≥80 cm for women and ≥94 cm for men]) were used (instead of BMI) to create the four metabolic health/body size phenotype categories. Statistical tests used in the analysis were all two-sided, and a p-value of <0.05 was considered statistically significant. In multivariable-adjusted conditional logistic regression models with BMI used to define adiposity, compared with metabolically healthy/normal weight individuals, we observed a higher colorectal cancer risk among metabolically unhealthy/normal weight (odds ratio [OR] = 1.59, 95% CI 1.10-2.28) and metabolically unhealthy/overweight (OR = 1.40, 95% CI 1.01-1.94) participants, but not among metabolically healthy/overweight individuals (OR = 0.96, 95% CI 0.65-1.42). Among the overweight individuals, lower colorectal cancer risk was observed for metabolically healthy/overweight individuals compared with metabolically unhealthy/overweight individuals (OR = 0.69, 95% CI 0.49-0.96). These associations were generally consistent when waist circumference was used as the measure of adiposity. To our knowledge, there is no universally accepted clinical definition for using C-peptide level as an indication of hyperinsulinaemia. Therefore, a possible limitation of our analysis was that the classification of individuals as being hyperinsulinaemic-based on their C-peptide level-was arbitrary. However, when we used quartiles or the median of C-peptide, instead of tertiles, as the cut-point of hyperinsulinaemia, a similar pattern of associations was observed. CONCLUSIONS These results support the idea that individuals with the metabolically healthy/overweight phenotype (with normal insulin levels) are at lower colorectal cancer risk than those with hyperinsulinaemia. The combination of anthropometric measures with metabolic parameters, such as C-peptide, may be useful for defining strata of the population at greater risk of colorectal cancer.