7 resultados para Resistencia genética
Resumo:
The purpose of this study was to determine the efficacy of a programme of strength-stamina exercises during haemodialysis, in improving muscular strength, quality of life and functional capacity to carry out everyday activities. A quantitative, experimental pre-test and post-test study was carried out. A programme of strength-stamina exercises in combination with neuromuscular electrostimulation was applied to 10 patients undergoing haemodialysis. These were three simple exercises adapted to the position in which haemodialysis was carried out. All the patients showed a significant improvement in strength, measured using functional tests to carry out everyday activities: walking (6-MWT) and sit-to-stand tests (10-STS). These tests were measured before and after the training programme. They also showed an improvement in the physical dimension of the quality of life measured using the specific questionnaire for renal patients, KDQOL-SFTM.
Resumo:
BACKGROUND. Maternal genetics and feeding before and during pregnancy, different maternal metabolic pathologies, as well as nutrient intakes of newborns in their first months of life may be involved in the obesity aetiology and its long-term consequences. The possible role of these and others factors, the mechanisms and the effects on the metabolism, and the development of this disease need further research. OBJECTIVE. To acquire more knowledge about foetal adipose tissue development and the influence of genetic, dietetic and environmental factors on the risk to suffer from obesity. METHODOLOGY. Four study groups have been established with 30 pregnant women in each one: 1) control group; 2) mothers with glucose intolerance/gestational diabetes; 3) women with low weight gain during pregnancy, and 4) women with overweight/obesity at the beginning of the pregnancy. The magnitudes to be studied are: 1) dietary intake; 2) life-style habits; 3) physical activity; 4) anthropometry and body composition; 5) haematological study; 6) biochemical study (lipid and metabolic biomarkers); 7) immune function profile related to nutritional status; 8) psychological profile; 9) genetic biomarkers, and 10) microbiological markers; all of them in relation to the development of the foetal adipose tissue in the first stages of life and the risk of suffering from obesity in the future. CONCLUSION. This project, coordinated by the Department of Paediatrics of the School of Medicine in the University of Granada, and with the collaboration of well-known and expert research groups, tries to contribute to the knowledge about the obesity aetiology in infancy and its subsequent development in later periods of life.
Resumo:
Hemodialysis patients present an increase in plasma homocysteine (Hcy) due to methylation impairment caused by uremia and the deficiency of the co-factors needed (vitamin B, folic acid). This correlates with a more common development of premature vascular disease. There is no consensus on the therapy, with a poor response to oral administration of conventional doses of folic acid. In this work, we assessed the response of hyperhomocysteinemia in 73 regular hemodialysis patients after the administration of 50 mg of parenteral folinic acid for 18 months. Plasma homocysteine of the patients at the time of the study beginning presented mean values of 22.67 (micromol/L). During the first year of supplementation the mean value was kept at 20 micromol/L. From the first year to the end of the 18-months observation period the mean homocysteine levels were 19.58 micromol/L. Although we found a clear trend towards a decrease in plasma homocysteine levels during the treatment period, there were no significant differences. Homocysteine levels did not come back to normal in none of the patients treated.
Resumo:
BACKGROUND Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Resumo:
SUMMARY The main objective was to evaluate the association between SNPs and haplotypes of the FABP1-4 genes and type 2 diabetes, as well as its interaction with fat intake, in one general Spanish population. The association was replicated in a second population in which HOMA index was also evaluated. METHODS 1217 unrelated individuals were selected from a population-based study [Hortega study: 605 women; mean age 54 y; 7.8% with type 2 diabetes]. The replication population included 805 subjects from Segovia, a neighboring region of Spain (446 females; mean age 52 y; 10.3% with type 2 diabetes). DM2 mellitus was defined in a similar way in both studies. Fifteen SNPs previously associated with metabolic traits or with potential influence in the gene expression within the FABP1-4 genes were genotyped with SNPlex and tested. Age, sex and BMI were used as covariates in the logistic regression model. RESULTS One polymorphism (rs2197076) and two haplotypes of the FABP-1 showed a strong association with the risk of DM2 in the original population. This association was further confirmed in the second population as well as in the pooled sample. None of the other analyzed variants in FABP2, FABP3 and FABP4 genes were associated. There was not a formal interaction between rs2197076 and fat intake. A significant association between the rs2197076 and the haplotypes of the FABP1 and HOMA-IR was also present in the replication population. CONCLUSIONS The study supports the role of common variants of the FABP-1 gene in the development of type 2 diabetes in Caucasians.
Resumo:
Boletín semanal para profesionales sanitarios de la Secretaría General de Salud Pública y Participación Social de la Consejería de Salud
Resumo:
CONTEXT Recently irisin (encoded by Fndc5 gene) has been reported to stimulate browning and uncoupling protein 1 expression in sc adipose tissue of mice. OBJECTIVE The objective of the study was to investigate FNDC5 gene expression in human muscle and adipose tissue and circulating irisin according to obesity, insulin sensitivity, and type 2 diabetes. DESIGN, PATIENTS, AND MAIN OUTCOME MEASURE Adipose tissue FNDC5 gene expression and circulating irisin (ELISA) were analyzed in 2 different cohorts (n = 125 and n = 76); muscle FNDC5 expression was also evaluated in a subcohort of 34 subjects. In vitro studies in human preadipocytes and adipocytes and in induced browning of 3T3-L1 cells (by means of retinoblastoma 1 silencing) were also performed. RESULTS In both sc and visceral adipose tissue, FNDC5 gene expression decreased significantly in association with obesity and was positively associated with brown adipose tissue markers, lipogenic, insulin pathway-related, mitochondrial, and alternative macrophage gene markers and negatively associated with LEP, TNFα, and FSP27 (a known repressor of brown genes). Circulating irisin and irisin levels in adipose tissue were significantly associated with FNDC5 gene expression in adipose tissue. In muscle, the FNDC5 gene was 200-fold more expressed than in adipose tissue, and its expression was associated with body mass index, PGC1α, and other mitochondrial genes. In obese participants, FNDC5 gene expression in muscle was significantly decreased in association with type 2 diabetes. Interestingly, muscle FNDC5 gene expression was significantly associated with FNDC5 and UCP1 gene expression in visceral adipose tissue. In men, circulating irisin levels were negatively associated with obesity and insulin resistance. Irisin was secreted from human adipocytes into the media, and the induction of browning in 3T3-L1 cells led to increased secreted irisin levels. CONCLUSIONS Decreased circulating irisin concentration and FNDC5 gene expression in adipose tissue and muscle from obese and type 2 diabetic subjects suggests a loss of brown-like characteristics and a potential target for therapy.