4 resultados para Quantification of Glutamate
Resumo:
Anisakis simplex is a nematode parasite that can infect humans who have eaten raw or undercooked seafood. Larvae invading the gastrointestinal mucosa excrete/secrete proteins that are implicated in the pathogenesis of anisakiasis and can induce IgE-mediated symptoms. Since Ani s 1 is a potent secreted allergen with important clinical relevance, its measurement could assess the quality of allergenic products used in diagnosis/immunotherapy of Anisakis allergy and track the presence of A. simplex parasites in fish foodstuffs. An antibody-based ELISA for quantification of Ani s 1 has been developed based on monoclonal antibody 4F2 as capture antibody and biotin-labelled polyclonal antibodies against Ani s 1 as detection reagent. The dose-response standard curves, obtained with natural and recombinant antigens, ranged from 4 to 2000 ng/ml and were identical and parallel to that of the A. simplex extract. The linear portion of the dose-response curve with nAni s 1 was between 15 and 250 ng/ml with inter-assay and intra-assays coefficients of variation less than 20% and 10%, respectively. The assay was specific since there was no cross-reaction with other extracts (except Ascaris extracts) and was highly sensitive (detection limit of 1·8 ng/ml), being able to detect Ani s 1 in fish extracts from codfish and monkfish.
Resumo:
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections pose major public health problems because of their prevalence worldwide. Consequently, screening for these infections is an important part of routine laboratory activity. Serological and molecular markers are key elements in diagnosis, prognosis and treatment monitoring for HBV and HCV infections. Today, automated chemiluminescence immunoassay (CLIA) analyzers are widely used for virological diagnosis, particularly in high-volume clinical laboratories. Molecular biology techniques are routinely used to detect and quantify viral genomes as well as to analyze their sequence; in order to determine their genotype and detect resistance to antiviral drugs. Real-time PCR, which provides high sensitivity and a broad dynamic range, has gradually replaced other signal and target amplification technologies for the quantification and detection of nucleic acid. The next-generation DNA sequencing techniques are still restricted to research laboratories.The serological and molecular marker methods available for HBV and HCV are discussed in this article, along with their utility and limitations for use in Chronic Hepatitis B (CHB) diagnosis and monitoring.
Resumo:
A strict gluten-free diet (GFD) is the only currently available therapeutic treatment for patients with celiac disease (CD). Traditionally, treatment with a GFD has excluded wheat, barley and rye, while the presence of oats is a subject of debate. The most-recent research indicates that some cultivars of oats can be a safe part of a GFD. In order to elucidate the toxicity of the prolamins from oat varieties with low, medium, and high CD toxicity, the avenin genes of these varieties were cloned and sequenced, and their expression quantified throughout the grain development. At the protein level, we have accomplished an exhaustive characterization and quantification of avenins by RP-HPLC and an analysis of immunogenicity of peptides present in prolamins of different oat cultivars. Avenin sequences were classified into three different groups, which have homology with S-rich prolamins of Triticeae. Avenin proteins presented a lower proline content than that of wheat gliadin; this may contribute to the low toxicity shown by oat avenins. The expression of avenin genes throughout the development stages has shown a pattern similar to that of prolamins of wheat and barley. RP-HPLC chromatograms showed protein peaks in the alcohol-soluble and reduced-soluble fractions. Therefore, oat grains had both monomeric and polymeric avenins, termed in this paper gliadin- and glutenin-like avenins. We found a direct correlation between the immunogenicity of the different oat varieties and the presence of the specific peptides with a higher/lower potential immunotoxicity. The specific peptides from the oat variety with the highest toxicity have shown a higher potential immunotoxicity. These results suggest that there is wide range of variation of potential immunotoxicity of oat cultivars that could be due to differences in the degree of immunogenicity in their sequences.
Resumo:
Growing awareness of cerebellar involvement in addiction is based on the cerebellum's intermediary position between motor and reward, potentially acting as an interface between motivational and cognitive functions. Here, we examined the impact of acute and repeated cocaine exposure on the two main signaling systems in the mouse cerebellum: the endocannabinoid (eCB) and glutamate systems. To this end, we investigated whether eCB signaling-related gene and protein expression {cannabinoid receptor type 1 receptors and enzymes that produce [diacylglycerol lipase alpha/beta (DAGLα/β) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD)] and degrade [monoacylglycerol lipase (MAGL) and fatty acid amino hydrolase (FAAH)] eCB} were altered. In addition, we analyzed the gene expression of relevant components of the glutamate signaling system [glutamate synthesizing enzymes liver-type glutaminase isoform (LGA) and kidney-type glutaminase isoform (KGA), metabotropic glutamatergic receptor (mGluR3/5), NMDA-ionotropic glutamatergic receptor (NR1/2A/2B/2C) and AMPA-ionotropic receptor subunits (GluR1/2/3/4)] and the gene expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, because noradrenergic terminals innervate the cerebellar cortex. Results indicated that acute cocaine exposure decreased DAGLα expression, suggesting a down-regulation of 2-arachidonylglycerol (2-AG) production, as well as gene expression of TH, KGA, mGluR3 and all ionotropic receptor subunits analyzed in the cerebellum. The acquisition of conditioned locomotion and sensitization after repeated cocaine exposure were associated with an increased NAPE-PLD/FAAH ratio, suggesting enhanced anandamide production, and a decreased DAGLβ/MAGL ratio, suggesting decreased 2-AG generation. Repeated cocaine also increased LGA gene expression but had no effect on glutamate receptors. These findings indicate that acute cocaine modulates the expression of the eCB and glutamate systems. Repeated cocaine results in normalization of glutamate receptor expression, although sustained changes in eCB is observed. We suggest that cocaine-induced alterations to cerebellar eCB should be considered when analyzing the adaptations imposed by psychostimulants that lead to addiction.