22 resultados para Protein kinases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2-/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca(2)(+) elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca(2)(+)/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Epidermal growth factor receptor (EGFR) and its downstream factors KRAS and BRAF are mutated in several types of cancer, affecting the clinical response to EGFR inhibitors. Mutations in the EGFR kinase domain predict sensitivity to the tyrosine kinase inhibitors gefitinib and erlotinib in lung adenocarcinoma, while activating point mutations in KRAS and BRAF confer resistance to the anti-EGFR monoclonal antibody cetuximab in colorectal cancer. The development of new generation methods for systematic mutation screening of these genes will allow more appropriate therapeutic choices. METHODS: We describe a high resolution melting (HRM) assay for mutation detection in EGFR exons 19-21, KRAS codon 12/13 and BRAF V600 using formalin-fixed paraffin-embedded samples. Somatic variation of KRAS exon 2 was also analysed by massively parallel pyrosequencing of amplicons with the GS Junior 454 platform. RESULTS: We tested 120 routine diagnostic specimens from patients with colorectal or lung cancer. Mutations in KRAS, BRAF and EGFR were observed in 41.9%, 13.0% and 11.1% of the overall samples, respectively, being mutually exclusive. For KRAS, six types of substitutions were detected (17 G12D, 9 G13D, 7 G12C, 2 G12A, 2 G12V, 2 G12S), while V600E accounted for all the BRAF activating mutations. Regarding EGFR, two cases showed exon 19 deletions (delE746-A750 and delE746-T751insA) and another two substitutions in exon 21 (one showed L858R with the resistance mutation T590M in exon 20, and the other had P848L mutation). Consistent with earlier reports, our results show that KRAS and BRAF mutation frequencies in colorectal cancer were 44.3% and 13.0%, respectively, while EGFR mutations were detected in 11.1% of the lung cancer specimens. Ultra-deep amplicon pyrosequencing successfully validated the HRM results and allowed detection and quantitation of KRAS somatic mutations. CONCLUSIONS: HRM is a rapid and sensitive method for moderate-throughput cost-effective screening of oncogene mutations in clinical samples. Rather than Sanger sequence validation, next-generation sequencing technology results in more accurate quantitative results in somatic variation and can be achieved at a higher throughput scale.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTEXT: Primary pigmented nodular adrenocortical disease (PPNAD), a rare cause of corticotropin-independent Cushing syndrome, can be part of Carney complex (CNC), an autosomal dominant multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac myxomas, and endocrine tumors or be isolated (i). Germline PRKAR1A-inactivating mutations have been observed in both CNC and iPPNAD, but with no apparent genotype-phenotype correlation. OBJECTIVE:The objectives of the study were a detailed phenotyping for CNC manifestations in 12 kindreds bearing the same PRKAR1A mutation and a study of the consequences of the mutation and a potential founder effect. DESIGN: The study consisted of descriptive case reports. SETTING: The study was conducted at two referral centers. PATIENTS: The patients described in this study were referred for PRKAR1A gene mutation analysis because of a diagnosis of apparently iPPNAD. RESULTS: We describe a 6-bp polypyrimidine tract deletion [exon 7 IVS del (-7-->-2)] in 12 unrelated kindreds that were referred for Cushing syndrome due to PPNAD. Nine of the patients had no family history; in two, there was a family history of iPPNAD. Only one patient met the criteria for CNC. Relatives carrying the same mutation had no manifestations of CNC or PPNAD, suggesting a low penetrance of this PRKAR1A defect. A founder effect was excluded by extensive genotyping of chromosome 17 markers. CONCLUSIONS: In conclusion, a small intronic deletion of the PRKAR1A gene is a low-penetrance cause of mainly iPPNAD; it is the first PRKAR1A genetic defect to have an association with a specific phenotype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR)as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNalpha treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner,inducing phosphorylation of the protein synthesis translation initiation factor eIF-2alpha and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNalpha combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trastuzumab and gemcitabine are two active drugs for meta-static breast cancer (MBC) treatment. We conducted a retrospective study of this combination in patients with Her2+ MBC in our hospital.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To study the efficacy of different regimens of treatment based on trastuzumab in patients with Her2+ metastatic breast cancer (MBC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND ErbB2-positive breast cancer is characterized by highly aggressive phenotypes and reduced responsiveness to standard therapies. Although specific ErbB2-targeted therapies have been designed, only a small percentage of patients respond to these treatments and most of them eventually relapse. The existence of this population of particularly aggressive and non-responding or relapsing patients urges the search for novel therapies. The purpose of this study was to determine whether cannabinoids might constitute a new therapeutic tool for the treatment of ErbB2-positive breast tumors. We analyzed their antitumor potential in a well established and clinically relevant model of ErbB2-driven metastatic breast cancer: the MMTV-neu mouse. We also analyzed the expression of cannabinoid targets in a series of 87 human breast tumors. RESULTS Our results show that both Delta9-tetrahydrocannabinol, the most abundant and potent cannabinoid in marijuana, and JWH-133, a non-psychotropic CB2 receptor-selective agonist, reduce tumor growth, tumor number, and the amount/severity of lung metastases in MMTV-neu mice. Histological analyses of the tumors revealed that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis, and impair tumor angiogenesis. Cannabinoid antitumoral action relies, at least partially, on the inhibition of the pro-tumorigenic Akt pathway. We also found that 91% of ErbB2-positive tumors express the non-psychotropic cannabinoid receptor CB2. CONCLUSIONS Taken together, these results provide a strong preclinical evidence for the use of cannabinoid-based therapies for the management of ErbB2-positive breast cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Hirschsprung disease (HSCR) is a congenital malformation of the hindgut produced by a disruption in neural crest cell migration during embryonic development. HSCR has a complex genetic etiology and mutations in several genes, mainly the RET proto-oncogene, have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. METHODS In this study we have aimed to analyze the presence of CNVs in some HSCR genes (RET, EDN3, GDNF and ZFHX1B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. RESULTS Two alterations in the MLPA profiles of RET and EDN3 were detected, but a detailed inspection showed that the decrease in the corresponding dosages were due to point mutations affecting the hybridization probes regions. CONCLUSION Our results indicate that CNVs of the gene coding regions analyzed here are not a common molecular cause of Hirschsprung disease. However, further studies are required to determine the presence of CNVs affecting non-coding regulatory regions, as well as other candidate genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obesity is associated with a low-grade chronic inflammation state. As a consequence, adipose tissue expresses pro-inflammatory cytokines that propagate inflammatory responses systemically elsewhere, promoting whole-body insulin resistance and consequential islet β-cell exhaustation. Thus, insulin resistance is considered the early stage of type 2 diabetes. However, there is evidence of obese individuals that never develop diabetes indicating that the mechanisms governing the association between the increase of inflammatory factors and type 2 diabetes are much more complex and deserve further investigation. We studied for the first time the differences in insulin signalling and inflammatory pathways in blood and visceral adipose tissue (VAT) of 20 lean healthy donors and 40 equal morbidly obese (MO) patients classified in high insulin resistance (high IR) degree and diabetes state. We studied the changes in proinflammatory markers and lipid content from serum; macrophage infiltration, mRNA expression of inflammatory cytokines and transcription factors, activation of kinases involved in inflammation and expression of insulin signalling molecules in VAT. VAT comparison of these experimental groups revealed that type 2 diabetic-MO subjects exhibit the same pro-inflammatory profile than the high IR-MO patients, characterized by elevated levels of IL-1β, IL-6, TNFα, JNK1/2, ERK1/2, STAT3 and NFκB. Our work rules out the assumption that the inflammation should be increased in obese people with type 2 diabetes compared to high IR obese. These findings indicate that some mechanisms, other than systemic and VAT inflammation must be involved in the development of type 2 diabetes in obesity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. METHODS Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. RESULTS We found no evidence of KRAS oncogenic mutations in all analyzed tumors. CONCLUSIONS This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Taxanes are among the most active drugs for the treatment of metastatic breast cancer, and, as a consequence, they have also been studied in the adjuvant setting. METHODS After breast cancer surgery, women with lymph node-positive disease were randomly assigned to treatment with fluorouracil, epirubicin, and cyclophosphamide (FEC) or with FEC followed by weekly paclitaxel (FEC-P). The primary endpoint of study-5-year disease-free survival (DFS)-was assessed by Kaplan-Meier analysis. Secondary endpoints included overall survival and analysis of the prognostic and predictive value of clinical and molecular (hormone receptors by immunohistochemistry and HER2 by fluorescence in situ hybridization) markers. Associations and interactions were assessed with a multivariable Cox proportional hazards model for DFS for the following covariates: age, menopausal status, tumor size, lymph node status, type of chemotherapy, tumor size, positive lymph nodes, HER2 status, and hormone receptor status. All statistical tests were two-sided. RESULTS Among the 1246 eligible patients, estimated rates of DFS at 5 years were 78.5% in the FEC-P arm and 72.1% in the FEC arm (difference = 6.4%, 95% confidence interval [CI] = 1.6% to 11.2%; P = .006). FEC-P treatment was associated with a 23% reduction in the risk of relapse compared with FEC treatment (146 relapses in the 614 patients in the FEC-P arm vs 193 relapses in the 632 patients in the FEC arm, hazard ratio [HR] = 0.77, 95% CI = 0.62 to 0.95; P = .022) and a 22% reduction in the risk of death (73 and 95 deaths, respectively, HR = 0.78, 95% CI = 0.57 to 1.06; P = .110). Among the 928 patients for whom tumor samples were centrally analyzed, type of chemotherapy (FEC vs FEC-P) (P = .017), number of involved axillary lymph nodes (P < .001), tumor size (P = .020), hormone receptor status (P = .004), and HER2 status (P = .006) were all associated with DFS. We found no statistically significant interaction between HER2 status and paclitaxel treatment or between hormone receptor status and paclitaxel treatment. CONCLUSIONS Among patients with operable breast cancer, FEC-P treatment statistically significantly reduced the risk of relapse compared with FEC as adjuvant therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neural crest cells (NCC) give rise to much of the tissue that forms the vertebrate head and face, including cartilage and bone, cranial ganglia and teeth. In this study we show that conditional expression of a dominant-negative (DN) form of Rho kinase (Rock) in mouse NCC results in severe hypoplasia of the frontonasal processes and first pharyngeal arch, ultimately resulting in reduction of the maxilla and nasal bones and severe craniofacial clefting affecting the nose, palate and lip. These defects resemble frontonasal dysplasia in humans. Disruption of the actin cytoskeleton, which leads to abnormalities in cell-matrix attachment, is seen in the RockDN;Wnt1-cre mutant embryos. This leads to elevated cell death, resulting in NCC deficiency and hypoplastic NCC-derived craniofacial structures. Rock is thus essential for survival of NCC that form the craniofacial region. We propose that reduced NCC numbers in the frontonasal processes and first pharyngeal arch, resulting from exacerbated cell death, may be the common mechanism underlying frontonasal dysplasia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Human papillomavirus (HPV)-related head and neck cancer has been associated with an improved prognosis in patients treated with radiotherapy (RT) +/- chemotherapy (CT); however, RT combined with epidermal growth factor receptor (EGFR) inhibitors has not been fully studied in this group of patients. METHODS Immunohistochemical expression of p16 and PCR of HPV16 DNA were retrospectively analyzed in tumor blocks from 108 stage III/IV head and neck cancer patients treated with RT+CT (56) or RT+EGFR inhibitors (52). Disease-free survival (DFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. RESULTS DNA of HPV16 was found in 12 of 108 tumors (11%) and p16 positivity in 18 tumors (17%), with similar rates in both arms of treatment. After a median follow-up time of 35 months (range 6-135), p16-positive patients treated with RT+EGFR inhibitors showed improved survival compared with those treated with RT+CT (2-year OS 88% vs. 60%, HR 0.18; 95% CI 0.04 to 0.88; p = 0.01; and 2-year DFS 75% vs. 47%, HR 0.17; 95% CI 0.03 to 0.8; p = 0.01). However, no differences were observed in p16-negative patients (2-year OS 56% vs. 53%, HR 0.97; 95% CI 0.55 to 1.7; p = 0.9; and 2-year DFS 43% vs. 45%, HR 0.99; 95% CI 0.57 to 1.7; p = 0.9). CONCLUSIONS This is the first study to show that p16-positive patients may benefit more from RT+EGFR inhibitors than conventional RT+CT. These results are hypothesis-generating and should be confirmed in prospective trials.