2 resultados para Ossat, Arnaud de (1536-1604)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Identifying individuals at high risk of excess weight gain may help targeting prevention efforts at those at risk of various metabolic diseases associated with weight gain. Our aim was to develop a risk score to identify these individuals and validate it in an external population. METHODS We used lifestyle and nutritional data from 53°758 individuals followed for a median of 5.4 years from six centers of the European Prospective Investigation into Cancer and Nutrition (EPIC) to develop a risk score to predict substantial weight gain (SWG) for the next 5 years (derivation sample). Assuming linear weight gain, SWG was defined as gaining ≥ 10% of baseline weight during follow-up. Proportional hazards models were used to identify significant predictors of SWG separately by EPIC center. Regression coefficients of predictors were pooled using random-effects meta-analysis. Pooled coefficients were used to assign weights to each predictor. The risk score was calculated as a linear combination of the predictors. External validity of the score was evaluated in nine other centers of the EPIC study (validation sample). RESULTS Our final model included age, sex, baseline weight, level of education, baseline smoking, sports activity, alcohol use, and intake of six food groups. The model's discriminatory ability measured by the area under a receiver operating characteristic curve was 0.64 (95% CI = 0.63-0.65) in the derivation sample and 0.57 (95% CI = 0.56-0.58) in the validation sample, with variation between centers. Positive and negative predictive values for the optimal cut-off value of ≥ 200 points were 9% and 96%, respectively. CONCLUSION The present risk score confidently excluded a large proportion of individuals from being at any appreciable risk to develop SWG within the next 5 years. Future studies, however, may attempt to further refine the positive prediction of the score.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery.