10 resultados para Oncolytic virology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

MALDI-TOF mass spectrometry is a diagnostic tool of microbial identification and characterization based on the detection of the mass of molecules. In the majority of clinical laboratories, this technology is currently being used mainly for bacterial diagnosis, but several approaches in the field of virology have been investigated. The introduction of this technology in clinical virology will improve the diagnosis of infections produced by viruses but also the discovery of mutations and variants of these microorganisms as well as the detection of antiviral resistance. This review is focused on the main current applications of MALDI-TOF MS techniques in clinical virology showing the state of the art with respect to this exciting new technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the non-B HIV-1 subtypes are predominant in Sub-Saharan Africa and India although they have been found worldwide. In the last decade, immigration from these areas has increased considerably in Spain. The objective of this study was to evaluate the prevalence of non-B subtypes circulating in a cohort of HIV-1-infected immigrants in Seville, Southern Spain and to identify drug resistance-associated mutations. METHODS: Complete protease and first 220 codons of the reverse transcriptase coding regions were amplified and sequenced by population sequencing. HIV-1 subtypes were determined using Stanford University Drug Resistance Database, and phylogenetic analysis was performed comparing multiple reported sequences. Drug resistance mutations were defined according to the International AIDS Society-USA. RESULTS: From 2000 to 2010 a total of 1,089 newly diagnosed HIV-1-infected patients were enrolled in our cohort. Of these, 121 were immigrants, of which 98 had ethical approval and informed consent to include in our study. Twenty-nine immigrants (29/98, 29.6%) were infected with non-B subtypes, of which 15/29 (51.7%) were CRF02-AG, mostly from Sub-Saharan Africa, and 2/29 (6.9%) were CRF01-AE from Eastern Europe. A, C, F, J and G subtypes from Eastern Europe, Central-South America and Sub-Saharan Africa were also present. Some others harboured recombinant forms CRF02-AG/CRF01-AE, CRF2-AG/G and F/B, B/C, and K/G, in PR and RT-coding regions. Patients infected with non-B subtypes showed a high frequency of minor protease inhibitor resistance mutations, M36I, L63P, and K20R/I. Only one patient, CRF02_AG, showed major resistance mutation L90M. Major RT inhibitor resistance mutations K70R and A98G were present in one patient with subtype G, L100I in one patient with CRF01_AE, and K103N in another patient with CRF01_AE. Three patients had other mutations such as V118I, E138A and V90I. CONCLUSIONS: The circulation of non-B subtypes has significantly increased in Southern Spain during the last decade, with 29.6% prevalence, in association with demographic changes among immigrants. This could be an issue in the treatment and management of these patients. Resistance mutations have been detected in these patients with a prevalence of 7% among treatment-naïve patients compared with the 21% detected among patients under HAART or during treatment interruption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new oligochromatographic assay, Speed-Oligo Novel Influenza A H1N1, was designed and optimized for the specific detection of the 2009 influenza A H1N1 virus. The assay is based on a PCR method coupled to detection of PCR products by means of a dipstick device. The target sequence is a 103-bp fragment within the hemagglutinin gene. The analytical sensitivity of the new assay was measured with serial dilutions of a plasmid that contained the target sequence, and we determined that down to one copy per reaction of the plasmid was reliably detected. Diagnostic performance was assessed with 103 RNAs from suspected cases (40 positive and 63 negative results) previously analyzed with a reference real-time PCR technique. All positive cases were confirmed, and no false-positive results were detected with the new assay. No cross-reactions were observed when other viral strains or clinical samples with other respiratory viruses were tested. According to these results, this new assay has 100% sensitivity and specificity. The turnaround time for the whole procedure was 140 min. The assay may be especially useful for the specific detection of 2009 H1N1 virus in laboratories not equipped with real-time PCR instruments

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Influenza surveillance networks must detect early the viruses that will cause the forthcoming annual epidemics and isolate the strains for further characterization. We obtained the highest sensitivity (95.4%) with a diagnostic tool that combined a shell-vial assay and reverse transcription-PCR on cell culture supernatants at 48 h, and indeed, recovered the strain

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine human papillomavirus (HPV) types distribution in cervical preneoplasic lesions in a Southern Spanish population and their relationship between HPV type and grade of histopathological abnormality. Finally, 232 cervical samples from 135 women with previous cytological abnormalities were included in this study. Colposcopy studies and biopsies were performed. Haematoxylin-eosin stained slides were observed and detection of HPV DNA in cervical swabs was carried out with use of a polymerase chain reaction and microarrays technology. The relationship between the presence of HPV infection and diagnostic variables was evaluated. HPV 16 was the most common type followed by HPV 58, 51, 33 and 31. However, the two HPV types targeted in the prophylactic vaccines such as HPV type 16 and 18 were detected in only 37 (21.2%) and 2 (1.1%) cases respectively. Thirty-three (18.9%) of samples were infected with multiple types, the majority of them with two types. In addition, during the follow-up of patients many changes in type distribution were observed. Several studies will be necessary in order to evaluate the HPV type distribution for therapeutically and prophylactic purposes such as vaccine treatment. Also, because of the differences obtained depending of use of various DNA technologies, the performance of some comparative studies of the different methods from detection of HPV would be advisable in a high population of patients and with the most homogeneous conditions possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been estimated that more than 70% of all medical activity is directly related to information providing analytical data. Substantial technological advances have taken place recently, which have allowed a previously unimagined number of analytical samples to be processed while offering high quality results. Concurrently, yet more new diagnostic determinations have been introduced - all of which has led to a significant increase in the prescription of analytical parameters. This increased workload has placed great pressure on the laboratory with respect to health costs. The present manager of the Clinical Laboratory (CL) has had to examine cost control as well as rationing - meaning that the CL's focus has not been strictly metrological, as if it were purely a system producing results, but instead has had to concentrate on its efficiency and efficacy. By applying re-engineering criteria, an emphasis has had to be placed on improved organisation and operating practice within the CL, focussing on the current criteria of the Integrated Management Areas where the technical and human resources are brought together. This re-engineering has been based on the concepts of consolidating and integrating the analytical platforms, while differentiating the production areas (CORE Laboratory) from the information areas. With these present concepts in mind, automation and virological treatment, along with serology in general, follow the same criteria as the rest of the operating methodology in the Clinical Laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nucleic acid amplification techniques are commonly used currently to diagnose viral diseases and manage patients with this kind of illnesses. These techniques have had a rapid but unconventional route of development during the last 30 years, with the discovery and introduction of several assays in clinical diagnosis. The increase in the number of commercially available methods has facilitated the use of this technology in the majority of laboratories worldwide. This technology has reduced the use of some other techniques such as viral culture based methods and serological assays in the clinical virology laboratory. Moreover, nucleic acid amplification techniques are now the methods of reference and also the most useful assays for the diagnosis in several diseases. The introduction of these techniques and their automation provides new opportunities for the clinical laboratory to affect patient care. The main objectives in performing nucleic acid tests in this field are to provide timely results useful for high-quality patient care at a reasonable cost, because rapid results are associated with improvements in patients care. The use of amplification techniques such as polymerase chain reaction, real-time polymerase chain reaction or nucleic acid sequence-based amplification for virus detection, genotyping and quantification have some advantages like high sensitivity and reproducibility, as well as a broad dynamic range. This review is an up-to-date of the main nucleic acid techniques and their clinical applications, and special challenges and opportunities that these techniques currently provide for the clinical virology laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections pose major public health problems because of their prevalence worldwide. Consequently, screening for these infections is an important part of routine laboratory activity. Serological and molecular markers are key elements in diagnosis, prognosis and treatment monitoring for HBV and HCV infections. Today, automated chemiluminescence immunoassay (CLIA) analyzers are widely used for virological diagnosis, particularly in high-volume clinical laboratories. Molecular biology techniques are routinely used to detect and quantify viral genomes as well as to analyze their sequence; in order to determine their genotype and detect resistance to antiviral drugs. Real-time PCR, which provides high sensitivity and a broad dynamic range, has gradually replaced other signal and target amplification technologies for the quantification and detection of nucleic acid. The next-generation DNA sequencing techniques are still restricted to research laboratories.The serological and molecular marker methods available for HBV and HCV are discussed in this article, along with their utility and limitations for use in Chronic Hepatitis B (CHB) diagnosis and monitoring.