2 resultados para Noise -- Measurement -- Catalonia -- Sarrià de Ter


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To study the linkage between material deprivation and mortality from all causes, for men and women separately, in the capital cities of the provinces in Andalusia and Catalonia (Spain). Methods: A small-area ecological study was devised using the census section as the unit for analysis. 188 983 Deaths occurring in the capital cities of the Andalusian provinces and 109 478 deaths recorded in the Catalan capital cities were examined. Principal components factorial analysis was used to devise a material deprivation index comprising the percentage of manual labourers, unemployment and illiteracy. A hierarchical Bayesian model was used to study the relationship between mortality and area deprivation. Main results: In most cities, results show an increased male mortality risk in the most deprived areas in relation to the least depressed. In Andalusia, the relative risks between the highest and lowest deprivation decile ranged from 1.24 (Malaga) to 1.40 (Granada), with 95% credibility intervals showing a significant excess risk. In Catalonia, relative risks ranged between 1.08 (Girona) and 1.50 (Tarragona). No evidence was found for an excess of female mortality in most deprived areas in either of the autonomous communities. Conclusions: Within cities, gender-related differences were revealed when deprivation was correlated geographically with mortality rates. These differences were found from an ecological perspective. Further research is needed in order to validate these results from an individual approach. The idea to be analysed is to identify those factors that explain these differences at an individual level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epidemiologic studies, measurement error in dietary variables often attenuates association between dietary intake and disease occurrence. To adjust for the attenuation caused by error in dietary intake, regression calibration is commonly used. To apply regression calibration, unbiased reference measurements are required. Short-term reference measurements for foods that are not consumed daily contain excess zeroes that pose challenges in the calibration model. We adapted two-part regression calibration model, initially developed for multiple replicates of reference measurements per individual to a single-replicate setting. We showed how to handle excess zero reference measurements by two-step modeling approach, how to explore heteroscedasticity in the consumed amount with variance-mean graph, how to explore nonlinearity with the generalized additive modeling (GAM) and the empirical logit approaches, and how to select covariates in the calibration model. The performance of two-part calibration model was compared with the one-part counterpart. We used vegetable intake and mortality data from European Prospective Investigation on Cancer and Nutrition (EPIC) study. In the EPIC, reference measurements were taken with 24-hour recalls. For each of the three vegetable subgroups assessed separately, correcting for error with an appropriately specified two-part calibration model resulted in about three fold increase in the strength of association with all-cause mortality, as measured by the log hazard ratio. Further found is that the standard way of including covariates in the calibration model can lead to over fitting the two-part calibration model. Moreover, the extent of adjusting for error is influenced by the number and forms of covariates in the calibration model. For episodically consumed foods, we advise researchers to pay special attention to response distribution, nonlinearity, and covariate inclusion in specifying the calibration model.