51 resultados para Multidrug-resistant gram-negative bacteria
Resumo:
INTRODUCTION Finding therapeutic alternatives to carbapenems in infections caused by extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) is imperative. Although fosfomycin was discovered more than 40 years ago, it was not investigated in accordance with current standards and so is not used in clinical practice except in desperate situations. It is one of the so-called neglected antibiotics of high potential interest for the future. METHODS AND ANALYSIS The main objective of this project is to demonstrate the clinical non-inferiority of intravenous fosfomycin with regard to meropenem for treating bacteraemic urinary tract infections (UTI) caused by ESBL-EC. This is a 'real practice' multicentre, open-label, phase III randomised controlled trial, designed to compare the clinical and microbiological efficacy, and safety of intravenous fosfomycin (4 g/6 h) and meropenem (1 g/8 h) as targeted therapy for this infection; a change to oral therapy is permitted after 5 days in both arms, in accordance with predetermined options. The study design follows the latest recommendations for designing trials investigating new options for multidrug-resistant bacteria. Secondary objectives include the study of fosfomycin concentrations in plasma and the impact of both drugs on intestinal colonisation by multidrug-resistant Gram-negative bacilli. ETHICS AND DISSEMINATION Ethical approval was obtained from the Andalusian Coordinating Institutional Review Board (IRB) for Biomedical Research (Referral Ethics Committee), which obtained approval from the local ethics committees at all participating sites in Spain (22 sites). Data will be presented at international conferences and published in peer-reviewed journals. DISCUSSION This project is proposed as an initial step in the investigation of an orphan antimicrobial of low cost with high potential as a therapeutic alternative in common infections such as UTI in selected patients. These results may have a major impact on the use of antibiotics and the development of new projects with this drug, whether as monotherapy or combination therapy. TRIAL REGISTRATION NUMBER NCT02142751. EudraCT no: 2013-002922-21. Protocol V.1.1 dated 14 March 2014.
Resumo:
We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system.
Resumo:
A ciprofloxacin-resistant Escherichia coli isolate, isolate 1B, was obtained from a urinary specimen of a Canadian patient treated with norfloxacin for infection due to a ciprofloxacin-susceptible isolate, isolate 1A. Both isolates harbored a plasmid-encoded sul1-type integron with qnrA1 and blaVEB-1 genes. Isolate 1B had amino acid substitutions in gyrase and topoisomerase.
Resumo:
Extended-spectrum β-lactamases (ESBLs) form a heterogeneous group that share the property of hydrolytic activity against the oxyimino-β-lactams while remaining susceptible to inhibition by β-lactamase inhibitors, such as clavulanic acid. From a clinical point of view, they are important because they confer resistance to penicillins, aztreonam, and cephalosporins, and ESBL-producing organisms are typically also resistant to aminoglycosides, trimethoprim-sulfamethoxazole, and quinolones [1]. Until recently, the main problem posed by ESBLs was related to nosocomial outbreaks caused by ESBL-producing Klebsiella species. These outbreaks are usually clonal, the strains are mainly spread through cross-transmission, and the risk factors are similar to those found for other multidrug-resistant nosocomial pathogens [2]. In Europe and the United States, most ESBL-producing Klebsiella isolates harbored enzymes belonging to the TEM and SHV families [3]. Detection of colonized patients by performing surveillance cultures within affected units, isolation precautions for colonized patients, and restriction of oxyimino-β-lactam use are frequently useful for the control of these outbreaks [1]. There is no evidence that hospital-acquired ESBL-producing klebsiellae are decreasing in importance—in fact, data from the Centers for Disease Control and Prevention show that 20.6% of Klebsiella pneumoniae isolates from United States intensive care units in 2003 were probable producers of ESBL [4]. This represented a 47% increase, compared with the preceding 5 years. However, during the last few years, an impressive increase in the number of ESBL-producing Escherichia coli (and, less frequently, other Enterobacteriaceae) is being described in several parts of the world [5–8]. This emergent phenomenon shows some differences from the problem posed by Klebsiella species; many of these ESBL-producing E. coli are isolated …
Resumo:
BACKGROUND: Extended-spectrum beta-lactamase (ESBL)-producing members of the Enterobacteriaceae family are important nosocomial pathogens. Escherichia coli producing a specific family of ESBL (the CTX-M enzymes) are emerging worldwide. The epidemiology of these organisms as causes of nosocomial infection is poorly understood. The aims of this study were to investigate the clinical and molecular epidemiology of nosocomial infection or colonization due to ESBL-producing E. coli in hospitalized patients, consider the specific types of ESBLs produced, and identify the risk factors for infection and colonization with these organisms. METHODS: All patients with nosocomial colonization and/or infection due to ESBL-producing E. coli in 2 centers (a tertiary care hospital and a geriatric care center) identified between January 2001 and May 2002 were included. A double case-control study was performed. The clonal relatedness of the isolates was studied by repetitive extragenic palindromic-polymerase chain reaction and pulsed-field gel electrophoresis. ESBLs were characterized by isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-seven case patients were included. CTX-M-producing E. coli were clonally unrelated and more frequently susceptible to nonoxyimino-beta-lactams. Alternately, isolates producing SHV- and TEM-type ESBL were epidemic and multidrug resistant. Urinary catheterization was a risk factor for both CTX-M-producing and SHV-TEM-producing isolates. Previous oxyimino-beta-lactam use, diabetes, and ultimately fatal or nonfatal underlying diseases were independent risk factors for infection or colonization with CTX-M-producing isolates, whereas previous fluoroquinolone use was associated with infection or colonization with SHV-TEM-producing isolates. CONCLUSIONS: The epidemiology of ESBL-producing E. coli as a cause of nosocomial infection is complex. Sporadic CTX-M-producing isolates coexisted with epidemic multidrug-resistant SHV-TEM-producing isolates. These data should be taken into account for the design of control measures.
Resumo:
OBJECTIVE To describe what is, to our knowledge, the first nosocomial outbreak of infection with pan-drug-resistant (including colistin-resistant) Acinetobacter baumannii, to determine the risk factors associated with these types of infections, and to determine their clinical impact. DESIGN Nested case-control cohort study and a clinical-microbiological study. SETTING A 1,521-bed tertiary care university hospital in Seville, Spain. PATIENTS Case patients were inpatients who had a pan-drug-resistant A. baumannii isolate recovered from a clinical or surveillance sample obtained at least 48 hours after admission to an intensive care unit (ICU) during the time of the epidemic outbreak. Control patients were patients who were admitted to any of the "boxes" (ie, rooms that partition off a distinct area for a patient's bed and the equipment needed to care for the patient) of an ICU for at least 48 hours during the time of the epidemic outbreak. RESULTS All the clinical isolates had similar antibiotic susceptibility patterns (ie, they were resistant to all the antibiotics tested, including colistin), and, on the basis of repetitive extragenic palindromic-polymerase chain reaction, it was determined that all of them were of the same clone. The previous use of quinolones and glycopeptides and an ICU stay were associated with the acquisition of infection or colonization with pan-drug-resistant A. baumannii. To control this outbreak, we implemented the following multicomponent intervention program: the performance of environmental decontamination of the ICUs involved, an environmental survey, a revision of cleaning protocols, active surveillance for colonization with pan-drug-resistant A. baumannii, educational programs for the staff, and the display of posters that illustrate contact isolation measures and antimicrobial use recommendations. CONCLUSIONS We were not able to identify the common source for these cases of infection, but the adopted measures have proven to be effective at controlling the outbreak.
Resumo:
Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp. are a major cause of infections in hospitalised patients. The aim of our study was to evaluate rates and trends of resistance to third-generation cephalosporins and fluoroquinolones in infected patients, the trends in use for these antimicrobials, and to assess the potential correlation between both trends. The database of national point prevalence study series of infections and antimicrobial use among patients hospitalised in Spain over the period from 1999 to 2010 was analysed. On average 265 hospitals and 60,000 patients were surveyed per year yielding a total of 19,801 E. coli, 3,004 K. pneumoniae and 3,205 Enterobacter isolates. During the twelve years period, we observed significant increases for the use of fluoroquinolones (5.8%-10.2%, p<0.001), but not for third-generation cephalosporins (6.4%-5.9%, p=NS). Resistance to third-generation cephalosporins increased significantly for E. coli (5%-15%, p<0.01) and for K. pneumoniae infections (4%-21%, p<0.01) but not for Enterobacter spp. (24%). Resistance to fluoroquinolones increased significantly for E. coli (16%30%, p<0.01), for K. pneumoniae (5%-22%, p<0.01), and for Enterobacter spp. (6%-15%, p<0.01). We found strong correlations between the rate of fluoroquinolone use and the resistance to fluoroquinolones, third-generation cephalosporins, or co-resistance to both, for E. coli (R=0.97, p<0.01, R=0.94, p<0.01, and R=0.96, p<0.01, respectively), and for K. pneumoniae (R=0.92, p<0.01, R=0.91, p<0.01, and R=0.92, p<0.01, respectively). No correlation could be found between the use of third-generation cephalosporins and resistance to any of the latter antimicrobials. No significant correlations could be found for Enterobacter spp.. Knowledge of the trends in antimicrobial resistance and use of antimicrobials in the hospitalised population at the national level can help to develop prevention strategies.
Resumo:
Two hundred twelve patients with colonization/infection due to amoxicillin-clavulanate (AMC)-resistant Escherichia coli were studied. OXA-1- and inhibitor-resistant TEM (IRT)-producing strains were associated with urinary tract infections, while OXA-1 producers and chromosomal AmpC hyperproducers were associated with bacteremic infections. AMC resistance in E. coli is a complex phenomenon with heterogeneous clinical implications.
Resumo:
Several antimicrobial agents are being investigated as alternatives to carbapenems in the treatment of infections caused by ESBL-producing Enterobacteriaceae, which may be useful in avoiding overuse of carbapenems in the context of recent global spread of carbapenem-resistant Enterobacteriaceae. The most promising candidates for invasive infections so far are β-lactam/β-lactamase inhibitor combinations and cephamycins.
Resumo:
The aim of this study was to search for plasmid-encoded quinolone resistance determinants QnrA and QnrS in fluoroquinolone-resistant and extended-spectrum beta-lactamase (ESBL)-producing enterobacterial isolates recovered in Sydney, Australia, in 2002. Twenty-three fluoroquinolone-resistant, of which 16 were also ESBL-positive, enterobacterial and nonrelated isolates were studied. PCR with primers specific for qnrA and qnrS genes and primers specific for a series of ESBL genes were used. A qnrA gene was identified in two ESBL-positive isolates, whereas no qnrS-positive strain was found. The QnrA1 determinant was identified in an Enterobacter cloacae isolate and in a carbapenem-resistant Klebsiella pneumoniae isolate, both of which expressed the same ESBL SHV- 12. Whereas no plasmid was identified in the E. cloacae isolate, K. pneumoniae K149 possessed two conjugative plasmids, one that harbored the qnrA and bla (SHV)-12 genes whereas the other expressed the carbapenemase gene bla (IMP-4). The qnrA gene, was located in both cases downstream of the orf513 recombinase gene and upstream of the qnrA1 gene, a structure identical to that found in sul1-type integron In36 and qnrA-positive strains from Shanghai, China. However, the gene cassettes of the sul1-type integrons were different. This study identified the first plasmid-mediated quinolone resistance determinant in Enterobacteriaceae in Australia.
Resumo:
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, particularly those producing CTX-M types of ESBL, are emerging pathogens. Bacteremia caused by these organisms represents a clinical challenge, because the organisms are frequently resistant to the antimicrobials recommended for treatment of patients with suspected E. coli sepsis. METHODS:A cohort study was performed that included all episodes of bloodstream infection due to ESBL-producing E. coli during the period from January 2001 through March 2005. Data on predisposing factors, clinical presentation, and outcome were collected. ESBLs were characterized using isoelectric focusing, polymerase chain reaction, and sequencing. RESULTS: Forty-three episodes (8.8% of cases of bacteremia due to E. coli) were included; 70% of the isolates produced a CTX-M type of ESBL. The most frequent origins of infection were the urinary (46%) and biliary tracts (21%). Acquisition was nosocomial in 21 cases (49%), health care associated in 14 cases (32%), and strictly community acquired in 8 cases (19%). Thirty-eight percent and 25% of patients had obstructive diseases of the urinary and biliary tracts, respectively, and 38% had recently received antimicrobials. Nine patients (21%) died. Compared with beta-lactam/beta-lactamase-inhibitor and carbapenem-based regimens, empirical therapy with cephalosporins or fluoroquinolones was associated with a higher mortality rate (9% vs. 35%; P=.05) and needed to be changed more frequently (24% vs. 78%; P=.001). CONCLUSIONS: ESBL-producing E. coli is a significant cause of bloodstream infection in hospitalized and nonhospitalized patients in the context of the emergence of CTX-M enzymes. Empirical treatment of sepsis potentially caused by E. coli may need to be reconsidered in areas where such ESBL-producing isolates are present.
Resumo:
We conducted a prospective multicenter study in Spain to characterize the mechanisms of resistance to amoxicillin-clavulanate (AMC) in Escherichia coli. Up to 44 AMC-resistant E. coli isolates (MIC ≥ 32/16 μg/ml) were collected at each of the seven participant hospitals. Resistance mechanisms were characterized by PCR and sequencing. Molecular epidemiology was studied by pulsed-field gel electrophoresis (PFGE) and by multilocus sequence typing. Overall AMC resistance was 9.3%. The resistance mechanisms detected in the 257 AMC-resistant isolates were OXA-1 production (26.1%), hyperproduction of penicillinase (22.6%), production of plasmidic AmpC (19.5%), hyperproduction of chromosomic AmpC (18.3%), and production of inhibitor-resistant TEM (IRT) (17.5%). The IRTs identified were TEM-40 (33.3%), TEM-30 (28.9%), TEM-33 (11.1%), TEM-32 (4.4%), TEM-34 (4.4%), TEM-35 (2.2%), TEM-54 (2.2%), TEM-76 (2.2%), TEM-79 (2.2%), and the new TEM-185 (8.8%). By PFGE, a high degree of genetic diversity was observed although two well-defined clusters were detected in the OXA-1-producing isolates: the C1 cluster consisting of 19 phylogroup A/sequence type 88 [ST88] isolates and the C2 cluster consisting of 19 phylogroup B2/ST131 isolates (16 of them producing CTX-M-15). Each of the clusters was detected in six different hospitals. In total, 21.8% of the isolates were serotype O25b/phylogroup B2 (O25b/B2). AMC resistance in E. coli is widespread in Spain at the hospital and community levels. A high prevalence of OXA-1 was found. Although resistant isolates were genetically diverse, clonality was linked to OXA-1-producing isolates of the STs 88 and 131. Dissemination of IRTs was frequent, and the epidemic O25b/B2/ST131 clone carried many different mechanisms of AMC resistance.
Resumo:
The impact of antimicrobial resistance on clinical outcomes is the subject of ongoing investigations, although uncertainty remains about its contribution to mortality. We investigated the impact of carbapenem resistance on mortality in Pseudomonas aeruginosa bacteremia in a prospective multicenter (10 teaching hospitals) observational study of patients with monomicrobial bacteremia followed up for 30 days after the onset of bacteremia. The adjusted influence of carbapenem resistance on mortality was studied by using Cox regression analysis. Of 632 episodes, 487 (77%) were caused by carbapenem-susceptible P. aeruginosa (CSPA) isolates, and 145 (23%) were caused by carbapenem-resistant P. aeruginosa (CRPA) isolates. The median incidence density of nosocomial CRPA bacteremia was 2.3 episodes per 100,000 patient-days (95% confidence interval [CI], 1.9 to 2.8). The regression demonstrated a time-dependent effect of carbapenem resistance on mortality as well as a significant interaction with the Charlson index: the deleterious effect of carbapenem resistance on mortality decreased with higher Charlson index scores. The impact of resistance on mortality was statistically significant only from the fifth day after the onset of the bacteremia, reaching its peak values at day 30 (adjusted hazard ratio for a Charlson score of 0 at day 30, 9.9 [95% CI, 3.3 to 29.4]; adjusted hazard ratio for a Charlson score of 5 at day 30, 2.6 [95% CI, 0.8 to 8]). This study clarifies the relationship between carbapenem resistance and mortality in patients with P. aeruginosa bacteremia. Although resistance was associated with a higher risk of mortality, the study suggested that this deleterious effect may not be as great during the first days of the bacteremia or in the presence of comorbidities.
Resumo:
There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals.
Resumo:
The fitness and virulence costs associated with the clinical acquisition of colistin resistance by Acinetobacter baumannii were evaluated. The growth of strain CR17 (colistin resistant) was less than that of strain CS01 (colistin susceptible) when the strains were grown in competition (72-h competition index, 0.008). In a murine sepsis model, CS01 and CR17 reached spleen concentrations when coinfecting of 9.31 and 6.97 log10 CFU/g, respectively, with an in vivo competition index of 0.016. Moreover, CS01 was more virulent than CR17 with respect to mortality and time to death.