3 resultados para Mucor plumbeus ATCC 4740
Resumo:
Escherichia coli is commonly involved in infections with a heavy bacterial burden. Piperacillin-tazobactam and carbapenems are among the recommended empirical treatments for health care-associated complicated intra-abdominal infections. In contrast to amoxicillin-clavulanate, both have reduced in vitro activity in the presence of high concentrations of extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli bacteria. Our goal was to compare the efficacy of these antimicrobials against different concentrations of two clinical E. coli strains, one an ESBL-producer and the other a non-ESBL-producer, in a murine sepsis model. An experimental sepsis model {~5.5 log10 CFU/g [low inoculum concentration (LI)] or ~7.5 log(10) CFU/g [high inoculum concentration (HI)]} using E. coli strains ATCC 25922 (non-ESBL producer) and Ec1062 (CTX-M-14 producer), which are susceptible to the three antimicrobials, was used. Amoxicillin-clavulanate (50/12.5 mg/kg given intramuscularly [i.m.]), piperacillin-tazobactam (25/3.125 mg/kg given intraperitoneally [i.p.]), and imipenem (30 mg/kg i.m.) were used. Piperacillin-tazobactam and imipenem reduced spleen ATCC 25922 strain concentrations (-2.53 and -2.14 log10 CFU/g [P < 0.05, respectively]) in the HI versus LI groups, while amoxicillin-clavulanate maintained its efficacy (-1.01 log10 CFU/g [no statistically significant difference]). Regarding the Ec1062 strain, the antimicrobials showed lower efficacy in the HI than in the LI groups: -0.73, -1.89, and -1.62 log10 CFU/g (P < 0.05, for piperacillin-tazobactam, imipenem, and amoxicillin-clavulanate, respectively, although imipenem and amoxicillin-clavulanate were more efficacious than piperacillin-tazobactam). An adapted imipenem treatment (based on the time for which the serum drug concentration remained above the MIC obtained with a HI of the ATCC 25922 strain) improved its efficacy to -1.67 log10 CFU/g (P < 0.05). These results suggest that amoxicillin-clavulanate could be an alternative to imipenem treatment of infections caused by ESBL- and non-ESBL-producing E. coli strains in patients with therapeutic failure with piperacillin-tazobactam.
Resumo:
We investigated the mechanisms of resistance to carbapenems, aminoglycosides, glycylcyclines, tetracyclines, and quinolones in 90 multiresistant clinical strains of Acinetobacter baumannii isolated from two genetically unrelated A. baumannii clones: clone PFGE-ROC-1 (53 strains producing the OXA-58 β-lactamase enzyme and 18 strains with the OXA-24 β-lactamase) and clone PFGE-HUI-1 (19 strains susceptible to carbapenems). We used real-time reverse transcriptase PCR to correlate antimicrobial resistance (MICs) with expression of genes encoding chromosomal β-lactamases (AmpC and OXA-51), porins (OmpA, CarO, Omp33, Dcap-like, OprB, Omp25, OprC, OprD, and OmpW), and proteins integral to six efflux systems (AdeABC, AdeIJK, AdeFGH, CraA, AbeM, and AmvA). Overexpression of the AdeABC system (level of expression relative to that by A. baumannii ATCC 17978, 30- to 45-fold) was significantly associated with resistance to tigecycline, minocycline, and gentamicin and other biological functions. However, hyperexpression of the AdeIJK efflux pump (level of expression relative to that by A. baumannii ATCC 17978, 8- to 10-fold) was significantly associated only with resistance to tigecycline and minocycline (to which the TetB efflux system also contributed). TetB and TetA(39) efflux pumps were detected in clinical strains and were associated with resistance to tetracyclines and doxycycline. The absence of the AdeABC system and the lack of expression of other mechanisms suggest that tigecycline-resistant strains of the PFGE-HUI-1 clone may be associated with a novel resistance-nodulation-cell efflux pump (decreased MICs in the presence of the inhibitor Phe-Arg β-naphthylamide dihydrochloride) and the TetA(39) system.
Resumo:
There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals.