6 resultados para Molecular processes
Resumo:
Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.
Resumo:
BACKGROUND. The phenomenon of misdiagnosing tuberculosis (TB) by laboratory cross-contamination when culturing Mycobacterium tuberculosis (MTB) has been widely reported and it has an obvious clinical, therapeutic and social impact. The final confirmation of a cross-contamination event requires the molecular identification of the same MTB strain cultured from both the potential source of the contamination and from the false-positive candidate. The molecular tool usually applied in this context is IS6110-RFLP which takes a long time to provide an answer, usually longer than is acceptable for microbiologists and clinicians to make decisions. Our purpose in this study is to evaluate a novel PCR-based method, MIRU-VNTR as an alternative to assure a rapid and optimized analysis of cross-contamination alerts. RESULTS. MIRU-VNTR was prospectively compared with IS6110-RFLP for clarifying 19 alerts of false positivity from other laboratories. MIRU-VNTR highly correlated with IS6110-RFLP, reduced the response time by 27 days and clarified six alerts unresolved by RFLP. Additionally, MIRU-VNTR revealed complex situations such as contamination events involving polyclonal isolates and a false-positive case due to the simultaneous cross-contamination from two independent sources. CONCLUSION. Unlike standard RFLP-based genotyping, MIRU-VNTR i) could help reduce the impact of a false positive diagnosis of TB, ii) increased the number of events that could be solved and iii) revealed the complexity of some cross-contamination events that could not be dissected by IS6110-RFLP.
Resumo:
We applied MIRU-VNTR (mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing) to directly analyze the bacilli present in 61 stain-positive specimens from tuberculosis patients. A complete MIRU type (24 loci) was obtained for all but one (no amplification in one locus) of the specimens (98.4%), and the allelic values fully correlated with those obtained from the corresponding cultures. Our study is the first to demonstrate that real-time genotyping of Mycobacterium tuberculosis can be achieved, fully transforming the way in which molecular epidemiology techniques can be integrated into control programs.
Resumo:
There is strong evidence suggesting the presence of a genetic component in the aetiology of multiple myeloma (MM). However no genetic risk factors have been unequivocally established so far. To further our understanding of the genetic determinants of MM risk, a promising strategy is to collect a large set of patients in a consortium, as successfully done for other cancers. In this article, we review the main findings in the genetic susceptibility and pharmacogenetics of MM and present the strategy of the IMMEnSE (International Multiple Myeloma rESEarch) consortium in contributing to determine the role of genetic variation in pharmacogenetics and in MM risk.
Resumo:
Fragile X syndrome is the most common inherited form of intellectual disability. Here we report on a study based on a collaborative registry, involving 12 Spanish centres, of molecular diagnostic tests in 1105 fragile X families comprising 5062 individuals, of whom, 1655 carried a full mutation or were mosaic, three cases had deletions, 1840 had a premutation, and 102 had intermediate alleles. Two patients with the full mutation also had Klinefelter syndrome. We have used this registry to assess the risk of expansion from parents to children. From mothers with premutation, the overall rate of allele expansion to full mutation is 52.5%, and we found that this rate is higher for male than female offspring (63.6% versus 45.6%; P < 0.001). Furthermore, in mothers with intermediate alleles (45-54 repeats), there were 10 cases of expansion to a premutation allele, and for the smallest premutation alleles (55-59 repeats), there was a 6.4% risk of expansion to a full mutation, with 56 repeats being the smallest allele that expanded to a full mutation allele in a single meiosis. Hence, in our series the risk for alleles of <59 repeats is somewhat higher than in other published series. These findings are important for genetic counselling.
Resumo:
We present the first evaluation of a novel molecular assay, the Speed-oligo Direct Mycobacterium tuberculosis (SO-DMT) assay, which is based on PCR combined with a dipstick for the detection of mycobacteria and the specific identification of M. tuberculosis complex (MTC) in respiratory specimens. A blind evaluation was carried out in two stages: first, under experimental conditions on convenience samples comprising 20 negative specimens, 44 smear- and culture-positive respiratory specimens, and 11 sputa inoculated with various mycobacterium-related organisms; and second, in the routine workflow of 566 fresh respiratory specimens (4.9% acid-fast bacillus [AFB] smear positives, 7.6% MTC positives, and 1.8% nontuberculous mycobacteria [NTM] culture positives) from two Mycobacterium laboratories. SO-DMT assay showed no reactivity in any of the mycobacterium-free specimens or in those with mycobacterium-related organisms. Compared to culture, the sensitivity in the selected smear-positive specimens was 0.91 (0.92 for MTC and 0.90 for NTM), and there was no molecular detection of NTM in a tuberculosis case or vice versa. With respect to culture and clinical data, the sensitivity, specificity, and positive and negative predictive values for the SO-DMT system in routine specimens were 0.76 (0.93 in smear positives [1.0 for MTC and 0.5 for NTM] and 0.56 in smear negatives [0.68 for MTC and 0.16 for NTM]), 0.99, 0.85 (1.00 in smear positives and 0.68 in smear negatives), and 0.97, respectively. Molecular misidentification of NTM cases occurred when testing 2 gastric aspirates from two children with clinically but not microbiologically confirmed lung tuberculosis. The SO-DMT assay appears to be a fast and easy alternative for detecting mycobacteria and differentiating MTC from NTM in smear-positive respiratory specimens.