3 resultados para Modeling Geomorphological Processes
Resumo:
Aim: The aim of the study was to investigate the influence of dietary intake of commercial hydrolyzed collagen (Gelatine Royal ®) on bone remodeling in pre-pubertal children. Methods: A randomized double-blind study was carried out in 60 children (9.42 ± 1.31 years) divided into three groups according to the amount of partially hydrolyzed collagen taken daily for 4 months: placebo (G-I, n = 18), collagen (G-II, n = 20) and collagen + calcium (G-III, n = 22) groups. Analyses of the following biochemical markers were carried out: total and bone alkaline phosphatase (tALP and bALP), osteocalcin, tartrate-resistant acid phosphatase (TRAP), type I collagen carboxy terminal telopeptide, lipids, calcium, 25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), thyroid-stimulating hormone, free thyroxin and intact parathormone. Results: There was a significantly greater increase in serum IGF-1 in G-III than in G II (p < 0.01) or G-I (p < 0.05) during the study period, and a significantly greater increase in plasma tALP in G-III than in G-I (p < 0.05). Serum bALP behavior significantly (p < 0.05) differed between G-II (increase) and G-I (decrease). Plasma TRAP behavior significantly differed between G-II and G-I (p < 0.01) and between G-III and G-II (p < 0.05). Conclusion: Daily dietary intake of hydrolyzed collagen seems to have a potential role in enhancing bone remodeling at key stages of growth and development.
Resumo:
Initial care has been associated with improved survival of community-acquired pneumonia (CAP). We aimed to investigate patient comorbidities and health status measured by the Charlson index and clinical signs at diagnosis associated with adherence to recommended processes of care in CAP. We studied 3844 patients hospitalized with CAP. The evaluated recommendations were antibiotic adherence to Spanish guidelines, first antibiotic dose <6 hours and oxygen assessment. Antibiotic adherence was 72.6%, first dose <6 h was 73.4% and oxygen assessment was 90.2%. Antibiotic adherence was negatively associated with a high Charlson score (Odds ratio [OR], 0.91), confusion (OR, 0.66) and tachycardia ≥100 bpm (OR, 0.77). Delayed first dose was significantly lower in those with tachycardia (OR, 0.75). Initial oxygen assessment was negatively associated with fever (OR, 0.61), whereas tachypnea ≥30 (OR, 1.58), tachycardia (OR, 1.39), age >65 (OR, 1.51) and COPD (OR, 1.80) were protective factors. The combination of antibiotic adherence and timing <6 hours was negatively associated with confusion (OR, 0.69) and a high Charlson score (OR, 0.92) adjusting for severity and hospital effect, whereas age was not an independent factor. Deficient health status and confusion, rather than age, are associated with lower compliance with antibiotic therapy recommendations and timing, thus identifying a subpopulation more prone to receiving lower quality care.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.