2 resultados para MELCOR 2.1
Resumo:
OBJECTIVE: To explore the potential of deep HIV-1 sequencing for adding clinically relevant information relative to viral population sequencing in heavily pre-treated HIV-1-infected subjects. METHODS: In a proof-of-concept study, deep sequencing was compared to population sequencing in HIV-1-infected individuals with previous triple-class virological failure who also developed virologic failure to deep salvage therapy including, at least, darunavir, tipranavir, etravirine or raltegravir. Viral susceptibility was inferred before salvage therapy initiation and at virological failure using deep and population sequencing genotypes interpreted with the HIVdb, Rega and ANRS algorithms. The threshold level for mutant detection with deep sequencing was 1%. RESULTS: 7 subjects with previous exposure to a median of 15 antiretrovirals during a median of 13 years were included. Deep salvage therapy included darunavir, tipranavir, etravirine or raltegravir in 4, 2, 2 and 5 subjects, respectively. Self-reported treatment adherence was adequate in 4 and partial in 2; one individual underwent treatment interruption during follow-up. Deep sequencing detected all mutations found by population sequencing and identified additional resistance mutations in all but one individual, predominantly after virological failure to deep salvage therapy. Additional genotypic information led to consistent decreases in predicted susceptibility to etravirine, efavirenz, nucleoside reverse transcriptase inhibitors and indinavir in 2, 1, 2 and 1 subject, respectively. Deep sequencing data did not consistently modify the susceptibility predictions achieved with population sequencing for darunavir, tipranavir or raltegravir. CONCLUSIONS: In this subset of heavily pre-treated individuals, deep sequencing improved the assessment of genotypic resistance to etravirine, but did not consistently provide additional information on darunavir, tipranavir or raltegravir susceptibility. These data may inform the design of future studies addressing the clinical value of minority drug-resistant variants in treatment-experienced subjects.
Resumo:
BACKGROUND Waist circumference (WC) is a simple and reliable measure of fat distribution that may add to the prediction of type 2 diabetes (T2D), but previous studies have been too small to reliably quantify the relative and absolute risk of future diabetes by WC at different levels of body mass index (BMI). METHODS AND FINDINGS The prospective InterAct case-cohort study was conducted in 26 centres in eight European countries and consists of 12,403 incident T2D cases and a stratified subcohort of 16,154 individuals from a total cohort of 340,234 participants with 3.99 million person-years of follow-up. We used Prentice-weighted Cox regression and random effects meta-analysis methods to estimate hazard ratios for T2D. Kaplan-Meier estimates of the cumulative incidence of T2D were calculated. BMI and WC were each independently associated with T2D, with WC being a stronger risk factor in women than in men. Risk increased across groups defined by BMI and WC; compared to low normal weight individuals (BMI 18.5-22.4 kg/m(2)) with a low WC (<94/80 cm in men/women), the hazard ratio of T2D was 22.0 (95% confidence interval 14.3; 33.8) in men and 31.8 (25.2; 40.2) in women with grade 2 obesity (BMI≥35 kg/m(2)) and a high WC (>102/88 cm). Among the large group of overweight individuals, WC measurement was highly informative and facilitated the identification of a subgroup of overweight people with high WC whose 10-y T2D cumulative incidence (men, 70 per 1,000 person-years; women, 44 per 1,000 person-years) was comparable to that of the obese group (50-103 per 1,000 person-years in men and 28-74 per 1,000 person-years in women). CONCLUSIONS WC is independently and strongly associated with T2D, particularly in women, and should be more widely measured for risk stratification. If targeted measurement is necessary for reasons of resource scarcity, measuring WC in overweight individuals may be an effective strategy, since it identifies a high-risk subgroup of individuals who could benefit from individualised preventive action.