13 resultados para Lipid metabolismo
Resumo:
BACKGROUND Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
Resumo:
Objective To examine the association between serum concentrations of total cholesterol, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol, triglycerides, apolipoprotein A-I (apoA), apolipoprotein B and the incidence of colorectal cancer (CRC). Design Nested case–control study. Setting The study was conducted within the European Prospective Investigation into Cancer and Nutrition (EPIC), a cohort of more than 520 000 participants from 10 western European countries. Participants 1238 cases of incident CRC, which developed after enrolment into the cohort, were matched with 1238 controls for age, sex, centre, follow-up time, time of blood collection and fasting status. Main outcome measures Serum concentrations were quantitatively determined by colorimetric and turbidimetric methods. Dietary and lifestyle data were obtained from questionnaires. Conditional logistic regression models were used to estimate incidence rate ratios (RRs) and 95% CIs which were adjusted for height, weight, smoking habits, physical activity, education, consumption of fruit, vegetables, meat, fish, alcohol, fibre and energy. Results After adjustments, the concentrations of HDL and apoA were inversely associated with the risk of colon cancer (RR for 1 SD increase of 16.6 mg/dl in HDL and 32.0 mg/dl in apoA of 0.78 (95% CI 0.68 to 0.89) and 0.82 (95% CI 0.72 to 0.94), respectively). No association was observed with the risk of rectal cancer. Additional adjustment for biomarkers of systemic inflammation, insulin resistance and oxidative stress or exclusion of the first 2 years of follow-up did not influence the association between HDL and risk of colon cancer. Conclusions These findings show that high concentrations of serum HDL are associated with a decreased risk of colon cancer. The mechanism behind this association needs further elucidation.
Resumo:
BACKGROUND The present study was determined the influence of physical activity and dietary habits on lipid profile, blood pressure (BP) and body mass index (BMI) in subjects with metabolic syndrome (MS). AIMS Identify the relationship between physical activity and proper nutrition and the probability of suffering from myocardial infarction (MI). METHODS Hundred chronically ill with MS who were active and followed a healthy diet were classified as compliant, while the remaining subjects were classified as non-compliant. RESULTS The compliant subjects show lower BMI values (30.8±4.9 vs 32.5±4.6), as well as lower levels of triacylglycerol (130.4±48.2 vs 242.1±90.1), total cholesterol (193.5±39 vs 220.2±52.3) and low-density lipoprotein cholesterol (105.2±38.3 vs 139.2±45). They show higher values in terms of high-density lipoprotein cholesterol levels (62.2±20.1 vs 36.6±15.3), with statistically significant differences. In terms of both systolic and diastolic pressure, no differences were revealed between the groups; however, those who maintain proper dietary habits show lower systolic blood pressure levels than the inactive subjects. The probability of suffering from MI greatly increases among the group of non-compliant subjects. CONCLUSIONS Our results demonstrate how performing aerobic physical activity and following an individualized, Mediterranean diet significantly reduces MS indicators and the chances of suffering from MI.
Resumo:
The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.
Resumo:
BACKGROUND Adipose tissue is a key regulator of energy balance playing an active role in lipid storage and may be a dynamic buffer to control fatty acid flux. Just like PPARgamma, fatty acid synthesis enzymes such as FASN have been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance or dyslipemia. The aim of this work is to investigate how FASN and PPARgamma expression in human adipose tissue is related to carbohydrate metabolism dysfunction and obesity. METHODS The study included eighty-seven patients which were classified according to their BMI and to their glycaemia levels in order to study FASN and PPARgamma gene expression levels, anthropometric and biochemical variables. RESULTS The main result of this work is the close relation between FASN expression level and the factors that lead to hyperglycemic state (increased values of glucose levels, HOMA-IR, HbA1c, BMI and triglycerides). The correlation of the enzyme with these parameters is inversely proportional. On the other hand, PPARgamma is not related to carbohydrate metabolism. CONCLUSIONS We can demonstrate that FASN expression is a good candidate to study the pathophysiology of type II diabetes and obesity in humans.
Resumo:
The study of cross-reactivity in allergy is key to both understanding. the allergic response of many patients and providing them with a rational treatment In the present study, protein microarrays and a co-sensitization graph approach were used in conjunction with an allergen microarray immunoassay. This enabled us to include a wide number of proteins and a large number of patients, and to study sensitization profiles among members of the LTP family. Fourteen LTPs from the most frequent plant food-induced allergies in the geographical area studied were printed into a microarray specifically designed for this research. 212 patients with fruit allergy and 117 food-tolerant pollen allergic subjects were recruited from seven regions of Spain with different pollen profiles, and their sera were tested with allergen microarray. This approach has proven itself to be a good tool to study cross-reactivity between members of LTP family, and could become a useful strategy to analyze other families of allergens.
Resumo:
Lipid droplets (LDs) are organelles that coordinate lipid storage and mobilization, both processes being especially important in cells specialized in managing fat, the adipocytes. Proteomic analyses of LDs have consistently identified the small GTPase Rab18 as a component of the LD coat. However, the specific contribution of Rab18 to adipocyte function remains to be elucidated. Herein, we have analyzed Rab18 expression, intracellular localization and function in relation to the metabolic status of adipocytes. We show that Rab18 production increases during adipogenic differentiation of 3T3-L1 cells. In addition, our data show that insulin induces, via phosphatidylinositol 3-kinase (PI3K), the recruitment of Rab18 to the surface of LDs. Furthermore, Rab18 overexpression increased basal lipogenesis and Rab18 silencing impaired the lipogenic response to insulin, thereby suggesting that this GTPase promotes fat accumulation in adipocytes. On the other hand, studies of the β-adrenergic receptor agonist isoproterenol confirmed and extended previous evidence for the participation of Rab18 in lipolysis. Together, our data support the view that Rab18 is a common mediator of lipolysis and lipogenesis and suggests that the endoplasmic reticulum (ER) is the link that enables Rab18 action on these two processes. Finally, we describe, for the first time, the presence of Rab18 in human adipose tissue, wherein the expression of this GTPase exhibits sex- and depot-specific differences and is correlated to obesity. Taken together, these findings indicate that Rab18 is involved in insulin-mediated lipogenesis, as well as in β-adrenergic-induced lipolysis, likely facilitating interaction of LDs with ER membranes and the exchange of lipids between these compartments. A role for Rab18 in the regulation of adipocyte biology under both normal and pathological conditions is proposed.
Resumo:
The adipokine resistin is an insulin-antagonizing factor that also plays a regulatory role in inflammation, immunity, food intake, and gonadal function and also regulates growth hormone (GH) secretion in rat adenopituitary cells cultures with the adipokine. Although adipose tissue is the primary source of resistin, it is also expressed in other tissues, including the pituitary. The aim of this study is to investigate the possible action of resistin on the lipid metabolism in the pituitary gland in vivo (rats in two different nutritional status, fed and fast, treated with resistin on acute and a chronic way) and in vitro (adenopituitary cell cultures treated with the adipokine). Here, by a combination of in vivo and in vitro experimental models, we demonstrated that central acute and chronic administration of resistin enhance mRNA levels of the lipid metabolic enzymes which participated on lipolysis and moreover inhibiting mRNA levels of the lipid metabolic enzymes involved in lipogenesis. Taken together, our results demonstrate for the first time that resistin has a regulatory role on lipid metabolism in the pituitary gland providing a novel insight in relation to the mechanism by which this adipokine can participate in the integrated control of lipid metabolism.
Resumo:
Título: Programa de detección precoz de errores congénitos del metabolismo: Instrucciones para profesionales 2013 Anexo 1. Ideas claves sobre prueba del talón Anexo 2. Prueba del talón. Buenas prácticas en la toma y manipulación de la muestra Anexo 3. Cribado neonatal de fibrosis quística
Resumo:
To further understand the pharmacological properties of N-oleoylethanolamine (OEA), a naturally occurring lipid that activates peroxisome proliferator-activated receptor alpha (PPARα), we designed sulfamoyl analogs based on its structure. Among the compounds tested, N-octadecyl-N'-propylsulfamide (CC7) was selected for functional comparison with OEA. The performed studies include the following computational and biological approaches: 1) molecular docking analyses; 2) molecular biology studies with PPARα; 3) pharmacological studies on feeding behavior and visceral analgesia. For the docking studies, we compared OEA and CC7 data with crystallization data obtained with the reference PPARα agonist GW409544. OEA and CC7 interacted with the ligand-binding domain of PPARα in a similar manner to GW409544. Both compounds produced similar transcriptional activation by in vitro assays, including the GST pull-down assay and reporter gene analysis. In addition, CC7 and OEA induced the mRNA expression of CPT1a in HpeG2 cells through PPARα and the induction was avoided with PPARα-specific siRNA. In vivo studies in rats showed that OEA and CC7 had anorectic and antiobesity activity and induced both lipopenia and decreases in hepatic fat content. However, different effects were observed when measuring visceral pain; OEA produced visceral analgesia whereas CC7 showed no effects. These results suggest that OEA activity on the PPARα receptor (e.g., lipid metabolism and feeding behavior) may be dissociated from other actions at alternative targets (e.g., pain) because other non cannabimimetic ligands that interact with PPARα, such as CC7, do not reproduce the full spectrum of the pharmacological activity of OEA. These results provide new opportunities for the development of specific PPARα-activating drugs focused on sulfamide derivatives with a long alkyl chain for the treatment of metabolic dysfunction.
Resumo:
BACKGROUND Type 2 diabetes mellitus (T2DM) is an emerging risk factor for cognitive impairment. Whether this impairment is a direct effect of this metabolic disorder on brain function, a consequence of vascular disease, or both, remains unknown. Structural and functional neuroimaging studies in patients with T2DM could help to elucidate this question. OBJECTIVE We designed a cross-sectional study comparing 25 T2DM patients with 25 age- and gender-matched healthy control participants. Clinical information, APOE genotype, lipid and glucose analysis, structural cerebral magnetic resonance imaging including voxel-based morphometry, and F-18 fluorodeoxyglucose positron emission tomography were obtained in all subjects. METHODS Gray matter densities and metabolic differences between groups were analyzed using statistical parametric mapping. In addition to comparing the neuroimaging profiles of both groups, we correlated neuroimaging findings with HbA1c levels, duration of T2DM, and insulin resistance measurement (HOMA-IR) in the diabetic patients group. Results: Patients with T2DM presented reduced gray matter densities and reduced cerebral glucose metabolism in several fronto-temporal brain regions after controlling for various vascular risk factors. Furthermore, within the T2DM group, longer disease duration, and higher HbA1c levels and HOMA-IR were associated with lower gray matter density and reduced cerebral glucose metabolism in fronto-temporal regions. CONCLUSION In agreement with previous reports, our findings indicate that T2DM leads to structural and metabolic abnormalities in fronto-temporal areas. Furthermore, they suggest that these abnormalities are not entirely explained by the role of T2DM as a cardiovascular risk factor.
Resumo:
INTRODUCTION Rilpivirine (RPV) has a better lipid profile than efavirenz (EFV) in naïve patients (1). Switching to RPV may be convenient for many patients, while maintaining a good immunovirological control (2). The aim of this study was to analyze lipid changes in HIV-patients at 24 weeks after switching to Eviplera® (emtricitabine/RPV/tenofovir disoproxil fumarate [FTC/RPV/TDF]). MATERIALS AND METHODS Retrospective, multicentre study of a cohort of asymptomatic HIV-patients who switched from a regimen based on 2 nucleoside reverse transcriptase inhibitors (NRTI)+protease inhibitor (PI)/non nucleoside reverse transcriptase inhibitor (NNRTI) or ritonavir boosted PI monotherapy to Eviplera® during February-December, 2013; all had undetectable HIV viral load for ≥3 months prior to switching. Patients with previous failures on antiretroviral therapy (ART) including TDF and/or FTC/3TC, with genotype tests showing resistance to components of Eviplera®, or who had changed the third drug of the ART during the study period were excluded. Changes in lipid profile and cardiovascular risk (CVR), and efficacy and safety at 24 weeks were analyzed. RESULTS Among 305 patients included in the study, 298 were analyzed (7 cases were excluded due to lack of data). Men 81.2%, mean age 44.5 years, 75.8% of HIV sexually transmitted. 233 (78.2%) patients switched from a regimen based on 2 NRTI+NNRTI (90.5% EFV/FTC/TDF). The most frequent reasons for switching were central nervous system (CNS) adverse events (31.0%), convenience (27.6%) and metabolic disorders (23.2%). At this time, 293 patients have reached 24 weeks: 281 (95.9%) have continued Eviplera®, 6 stopped it (3 adverse events, 2 virologic failures, 1 discontinuation) and 6 have been lost to follow up. Lipid profiles of 283 cases were available at 24 weeks and mean (mg/dL) baseline vs 24 weeks are: total cholesterol (193 vs 169; p=0.0001), HDL-c (49 vs 45; p=0.0001), LDL-c (114 vs 103; p=0.001), tryglycerides (158 vs 115; p=0.0001), total cholesterol to HDL-c ratio (4.2 vs 4.1; p=0.3). CVR decreased (8.7 vs 7.5%; p= 0.0001). CD4 counts were similar to baseline (653 vs 674 cells/µL; p=0.08), and 274 (96.8%) patients maintained viral suppression. CONCLUSIONS At 24 weeks after switching to Eviplera®, lipid profile and CVR improved while maintaining a good immunovirological control. Most subjects switched to Eviplera® from a regimen based on NNRTI, mainly EFV/FTC/TDF. CNS adverse events, convenience and metabolic disorders were the most frequent reasons for switching.
Resumo:
Lipid nanocapsules (NCs) represent promising tools in clinical practice for diagnosis and therapy applications. However, the NC appropriate functionalization is essential to guarantee high biocompatibility and molecule loading ability. In any medical application, the immune system-impact of differently functionalized NCs still remains to be fully understood. A comprehensive study on the action exerted on human peripheral blood mononuclear cells (PBMCs) and major immune subpopulations by three different NC coatings: pluronic, chitosan and polyethylene glycol-polylactic acid (PEG) is reported. After a deep particle characterization, the uptake was assessed by flow-cytometry and confocal microscopy, focusing then on apoptosis, necrosis and proliferation impact in T cells and monocytes. Cell functionality by cell diameter variations, different activation marker analysis and cytokine assays were performed. We demonstrated that the NCs impact on the immune cell response is strongly correlated to their coating. Pluronic-NCs were able to induce immunomodulation of innate immunity inducing monocyte activations. Immunomodulation was observed in monocytes and T lymphocytes treated with Chitosan-NCs. Conversely, PEG-NCs were completely inert. These findings are of particular value towards a pre-selection of specific NC coatings depending on biomedical purposes for pre-clinical investigations; i.e. the immune-specific action of particular NC coating can be excellent for immunotherapy applications.