2 resultados para Line-based coplanarity model
Resumo:
Background Demand for home care services has increased considerably, along with the growing complexity of cases and variability among resources and providers. Designing services that guarantee co-ordination and integration for providers and levels of care is of paramount importance. The aim of this study is to determine the effectiveness of a new case-management based, home care delivery model which has been implemented in Andalusia (Spain). Methods Quasi-experimental, controlled, non-randomised, multi-centre study on the population receiving home care services comparing the outcomes of the new model, which included nurse-led case management, versus the conventional one. Primary endpoints: functional status, satisfaction and use of healthcare resources. Secondary endpoints: recruitment and caregiver burden, mortality, institutionalisation, quality of life and family function. Analyses were performed at base-line, and at two, six and twelve months. A bivariate analysis was conducted with the Student's t-test, Mann-Whitney's U, and the chi squared test. Kaplan-Meier and log-rank tests were performed to compare survival and institutionalisation. A multivariate analysis was performed to pinpoint factors that impact on improvement of functional ability. Results Base-line differences in functional capacity – significantly lower in the intervention group (RR: 1.52 95%CI: 1.05–2.21; p = 0.0016) – disappeared at six months (RR: 1.31 95%CI: 0.87–1.98; p = 0.178). At six months, caregiver burden showed a slight reduction in the intervention group, whereas it increased notably in the control group (base-line Zarit Test: 57.06 95%CI: 54.77–59.34 vs. 60.50 95%CI: 53.63–67.37; p = 0.264), (Zarit Test at six months: 53.79 95%CI: 49.67–57.92 vs. 66.26 95%CI: 60.66–71.86 p = 0.002). Patients in the intervention group received more physiotherapy (7.92 CI95%: 5.22–10.62 vs. 3.24 95%CI: 1.37–5.310; p = 0.0001) and, on average, required fewer home care visits (9.40 95%CI: 7.89–10.92 vs.11.30 95%CI: 9.10–14.54). No differences were found in terms of frequency of visits to A&E or hospital re-admissions. Furthermore, patients in the control group perceived higher levels of satisfaction (16.88; 95%CI: 16.32–17.43; range: 0–21, vs. 14.65 95%CI: 13.61–15.68; p = 0,001). Conclusion A home care service model that includes nurse-led case management streamlines access to healthcare services and resources, while impacting positively on patients' functional ability and caregiver burden, with increased levels of satisfaction.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.