3 resultados para Late Iron Age
Resumo:
Obesity-induced chronic inflammation leads to activation of the immune system that causes alterations of iron homeostasis including hypoferraemia, iron-restricted erythropoiesis, and finally mild-to-moderate anaemia. Thus, preoperative anaemia and iron deficiency are common among obese patients scheduled for bariatric surgery (BS). Assessment of patients should include a complete haematological and biochemical laboratory work-up, including measurement of iron stores, vitamin B12 and folate. In addition, gastrointestinal evaluation is recommended for most patients with iron-deficiency anaemia. On the other hand, BS is a long-lasting inflammatory stimulus in itself and entails a reduction of the gastric capacity and/or exclusion from the gastrointestinal tract which impair nutrients absorption, including dietary iron. Chronic gastrointestinal blood loss and iron-losingenteropathy may also contribute to iron deficiency after BS. Perioperative anaemia has been linked to increased postoperative morbidity and mortality and decreased quality of life after major surgery, whereas treatment of perioperative anaemia, and even haematinic deficiency without anaemia, has been shown to improve patient outcomes and quality of life. However, long-term follow-up data in regard to prevalence, severity, and causes of anaemia after BS are mostly absent. Iron supplements should be administered to patients after BS, but compliance with oral iron is no good. In addition, once iron deficiency has developed, it may prove refractory to oral treatment. In these situations, IV iron (which can circumvent the iron blockade at enterocytes and macrophages) has emerged as a safe and effective alternative for perioperative anaemia management. Monitoring should continue indefinitely even after the initial iron repletion and anaemia resolution, and maintenance IV iron treatment should be provided as required. New IV preparations, such ferric carboxymaltose, are safe, easy to use and up to 1000 mg can be given in a single session, thus providing an excellent tool to avoid or treat iron deficiency in this patient population.
Resumo:
Purpose: Iron overload (IO) has been associated with increased cardiovascular risk (CVR) and metabolic syndrome (MS) in the general population; both elevated CVR and MS are frequent in HIV- patients. Our aim was to analyze the prevalence of IO in a cohort of asymptomatic patients with HIV infection, and related factors. Methods: Cross-sectional study of a cohort of HIV outpatients in regular follow-up. Demographic, epidemiological, clinical, analytical and therapeutic data were collected. Patients completed a questionnaire about CVR factors and 10-year CV disease risk estimation (Framingham score), underwent a physical exam, and a fasting blood analysis. IO was defined as a plasma ferritin level higher than 200 m/L in women and 300 m/L in men. Results: 571 patients (446 men, 125 women), with a mean age of 43.2 years, sexual transmission of HIV in 68.5%, median CD4 count 474 cell/μL (IQR: 308-666), and 36.3% Aids cases 86.2% were on antiretroviral therapy (ART), and 74.8% of them had undetectable HIV viral load 14.6% met MS criteria, and mean CVR at 10 years was 6.67%. IO was detected in 11% of cases. Patients with IO were more immunosuppressed (CD4 count 369 vs 483/μL, p<0.0001), presented a higher prevalence of detectable HIV viral load (17.6% vs 8.9%; p<0.005), and of Aids cases (14.9% vs 8.7%; p<0.023), and lower plasma levels of cholesterol, HDLc and LDLc (154 vs 183, 34 vs 43, 93 vs 110 mg/dL, respectively; p<0.0001. In the multivariate analysis, the only related factor was CD4 count <350 cell/μL (OR 2.86, 95% CI 1.6-4.9; p<0.0001). IO was not associated with CVR nor with MS. Conclusions: IO is not uncommon in HIV patients, and it is only related with immunosuppression defined as CD4 count <350 cell/ mL, and in contrast to general population, it is not related with increased CVR nor with MS.
Resumo:
BACKGROUND Very few data exist on the clinical impact of permanent pacemaker implantation (PPI) after transcatheter aortic valve implantation. The objective of this study was to assess the impact of PPI after transcatheter aortic valve implantation on late outcomes in a large cohort of patients. METHODS AND RESULTS A total of 1556 consecutive patients without prior PPI undergoing transcatheter aortic valve implantation were included. Of them, 239 patients (15.4%) required a PPI within the first 30 days after transcatheter aortic valve implantation. At a mean follow-up of 22±17 months, no association was observed between the need for 30-day PPI and all-cause mortality (hazard ratio, 0.98; 95% confidence interval, 0.74-1.30; P=0.871), cardiovascular mortality (hazard ratio, 0.81; 95% confidence interval, 0.56-1.17; P=0.270), and all-cause mortality or rehospitalization for heart failure (hazard ratio, 1.00; 95% confidence interval, 0.77-1.30; P=0.980). A lower rate of unexpected (sudden or unknown) death was observed in patients with PPI (hazard ratio, 0.31; 95% confidence interval, 0.11-0.85; P=0.023). Patients with new PPI showed a poorer evolution of left ventricular ejection fraction over time (P=0.017), and new PPI was an independent predictor of left ventricular ejection fraction decrease at the 6- to 12-month follow-up (estimated coefficient, -2.26; 95% confidence interval, -4.07 to -0.44; P=0.013; R(2)=0.121). CONCLUSIONS The need for PPI was a frequent complication of transcatheter aortic valve implantation, but it was not associated with any increase in overall or cardiovascular death or rehospitalization for heart failure after a mean follow-up of ≈2 years. Indeed, 30-day PPI was a protective factor for the occurrence of unexpected (sudden or unknown) death. However, new PPI did have a negative effect on left ventricular function over time.