20 resultados para LENGTH-POLYMORPHISM ANALYSIS
Resumo:
Clonally complex infections by Mycobacterium tuberculosis are progressively more accepted. Studies of their dimension in epidemiological scenarios where the infective pressure is not high are scarce. Our study systematically searched for clonally complex infections (mixed infections by more than one strain and simultaneous presence of clonal variants) by applying mycobacterial interspersed repetitive-unit (MIRU)-variable-number tandem-repeat (VNTR) analysis to M. tuberculosis isolates from two population-based samples of respiratory (703 cases) and respiratory-extrapulmonary (R+E) tuberculosis (TB) cases (71 cases) in a context of moderate TB incidence. Clonally complex infections were found in 11 (1.6%) of the respiratory TB cases and in 10 (14.1%) of those with R+E TB. Among the 21 cases with clonally complex TB, 9 were infected by 2 independent strains and the remaining 12 showed the simultaneous presence of 2 to 3 clonal variants. For the 10 R+E TB cases with clonally complex infections, compartmentalization (different compositions of strains/clonal variants in independent infected sites) was found in 9 of them. All the strains/clonal variants were also genotyped by IS6110-based restriction fragment length polymorphism analysis, which split two MIRU-defined clonal variants, although in general, it showed a lower discriminatory power to identify the clonal heterogeneity revealed by MIRU-VNTR analysis. The comparative analysis of IS6110 insertion sites between coinfecting clonal variants showed differences in the genes coding for a cutinase, a PPE family protein, and two conserved hypothetical proteins. Diagnostic delay, existence of previous TB, risk for overexposure, and clustered/orphan status of the involved strains were analyzed to propose possible explanations for the cases with clonally complex infections. Our study characterizes in detail all the clonally complex infections by M. tuberculosis found in a systematic survey and contributes to the characterization that these phenomena can be found to an extent higher than expected, even in an unselected population-based sample lacking high infective pressure.
Resumo:
Under certain circumstances, it is possible to identify clonal variants of Mycobacterium tuberculosis infecting a single patient, probably as a result of subtle genetic rearrangements in part of the bacillary population. We systematically searched for these microevolution events in a different context, namely, recent transmission chains. We studied the clustered cases identified using a population-based universal molecular epidemiology strategy over a 5-year period. Clonal variants of the reference strain defining the cluster were found in 9 (12%) of the 74 clusters identified after the genotyping of 612 M. tuberculosis isolates by IS6110 restriction fragment length polymorphism analysis and mycobacterial interspersed repetitive units-variable-number tandem repeat typing. Clusters with microevolution events were epidemiologically supported and involved 4 to 9 cases diagnosed over a 1- to 5-year period. The IS6110 insertion sites from 16 representative isolates of reference and microevolved variants were mapped by ligation-mediated PCR in order to characterize the genetic background involved in microevolution. Both intragenic and intergenic IS6110 locations resulted from these microevolution events. Among those cases of IS6110 locations in intergenic regions which could have an effect on the regulation of adjacent genes, we identified the overexpression of cytochrome P450 in one microevolved variant using quantitative real-time reverse transcription-PCR. Our results help to define the frequency with which microevolution can be expected in M. tuberculosis transmission chains. They provide a snapshot of the genetic background of these subtle rearrangements and identify an event in which IS6110-mediated microevolution in an isogenic background has functional consequences.
Resumo:
The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.
Resumo:
BACKGROUND. The Beijing lineage of Mycobacterium tuberculosis is causing concern due to its global distribution and its involvement in severe outbreaks. Studies focused on this lineage are mainly restricted to geographical settings where its prevalence is high, whereas those in other areas are scarce. In this study, we analyze Beijing isolates in the Mediterranean area, where this lineage is not prevalent and is mainly associated with immigrant cases. RESULTS. Only 1% (N = 26) of the isolates from two population-based studies in Spain corresponded to Beijing strains, most of which were pan-susceptible and from Peruvian and Ecuadorian patients. Restriction fragment length polymorphism typing with the insertion sequence IS6110 identified three small clusters (2-3 cases). Mycobacterial interspersed repetitive unit-variable number tandem repeat typing (MIRU-15) offered low discriminatory power, requiring the introduction of five additional loci. A selection of the Beijing isolates identified in the Spanish sample, together with a sample of Beijing strains from Italy, to broaden the analysis context in the Mediterranean area, were assayed in an infection model with THP-1 cells. A wide range of intracellular growth rates was observed with only two isolates showing an increased intracellular replication, in both cases associated with contained production of TNF-alpha. No correlation was observed between virulence and the Beijing phylogenetic group, clustered/orphan status, or resistance. The Beijing strain responsible for extensive spread on Gran Canaria Island was also identified in Madrid, but did not lead to secondary cases and did not show high infectivity in the infection model. CONCLUSIONS. The Beijing lineage in our area is a non-homogeneous family, with only certain highly virulent representatives. The specific characterization of Beijing isolates in different settings could help us to accurately identify the virulent representatives before making general assumptions about this lineage.
Resumo:
Background. During the last few years, PCR-based methods have been developed to simplify and reduce the time required for genotyping Mycobacterium tuberculosis (MTB) by standard approaches based on IS6110-Restriction Fragment Length Polymorphism (RFLP). Of these, MIRU-12-VNTR (Mycobacterial interspersed repetitive units- variable number of tandem repeats) (MIRU-12) has been considered a good alternative. Nevertheless, some limitations and discrepancies with RFLP, which are minimized if the technique is complemented with spoligotyping, have been found. Recently, a new version of MIRU-VNTR targeting 15 loci (MIRU-15) has been proposed to improve the MIRU-12 format. Results. We evaluated the new MIRU-15 tool in two different samples. First, we analyzed the same convenience sample that had been used to evaluate MIRU-12 in a previous study, and the new 15-loci version offered higher discriminatory power (Hunter-Gaston discriminatory index [HGDI]: 0.995 vs 0.978; 34.4% of clustered cases vs 57.5%) and better correlation (full or high correlation with RFLP for 82% of the clusters vs 47%). Second, we evaluated MIRU-15 on a population-based sample and, once again, good correlation with the RFLP clustering data was observed (for 83% of the RFLP clusters). To understand the meaning of the discrepancies still found between MIRU-15 and RFLP, we analyzed the epidemiological data for the clustered patients. In most cases, splitting of RFLP-clustered patients by MIRU-15 occurred for those without epidemiological links, and RFLP-clustered patients with epidemiological links were also clustered by MIRU-15, suggesting a good epidemiological background for clustering defined by MIRU-15. Conclusion. The data obtained by MIRU-15 suggest that the new design is very efficient at assigning clusters confirmed by epidemiological data. If we add this to the speed with which it provides results, MIRU-15 could be considered a suitable tool for real-time genotyping.
Resumo:
Colorectal cancer is one of the most prevalent cancers in developed countries. However, the genetic factors influencing its appearance remain far from being fully characterized. Recently, a G>A functional transition mapping the 3' untranslated region of the CXCL12 gene (rs1801157) has been found to be under-represented among rectal cancer patients when compared to colon cancer patients from a Swedish series. Here we present the results from an independent analysis of CXCL12 rs1801157 in a larger CRC series of Spanish origin in order to analyse the robustness of this association within a different European population. No significant difference was observed between controls and colon or rectal cancer patients. We were also unable to find a correlation between rs1801157 and different prognostic markers such as metastasis development or disease-free survival time. The epidemiologic data involving CXCL12 rs1801157 in colorectal cancer risk are discussed.
Resumo:
Background. RET is the major gene associated to Hirschsprung disease (HSCR) with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. In the present study, we have performed a comprehensive study of our HSCR series evaluating the involvement of both RET rare variants (RVs) and common variants (CVs) in the context of the disease. Methods. RET mutational screening was performed by dHPLC and direct sequencing for the identification of RVs. In addition Taqman technology was applied for the genotyping of 3 RET CVs previously associated to HSCR, including a variant lying in an enhancer domain within RET intron 1 (rs2435357). Statistical analyses were performed using the SPSS v.17.0 to analyze the distribution of the variants. Results. Our results confirm the strongest association to HSCR for the "enhancer" variant, and demonstrate a significantly higher impact of it in male versus female patients. Integration of the RET RVs and CVs analysis showed that in 91.66% of cases with both kinds of mutational events, the enhancer allele is in trans with the allele bearing the RET RV. Conclusions. A gender effect exists on both the transmission and distribution of rare coding and common HSCR causing mutations. In addition, these RET CVs and RVs seem to act in a synergistic way leading to HSCR phenotype.
Resumo:
Background. Urotensin II (UII) is a potent vasoconstrictor peptide, which signals through a G-protein coupled receptor (GPCR) known as GPR14 or urotensin receptor (UTR). UII exerts a broad spectrum of actions in several systems such as vascular cell, heart muscle or pancreas, where it inhibits insulin release. Objective. Given the reported role of UII in insulin secretion, we have performed a genetic association analysis of the UTS2 gene and flanking regions with biochemical parameters related to insulin resistance (fasting glucose, glucose 2 hours after a glucose overload, fasting insulin and insulin resistance estimated as HOMA). Results and Conclusions. We have identified several polymorphisms associated with the analysed clinical traits, not only at the UTS2 gene, but also in thePER3 gene, located upstream from UTS2. Our results are compatible with a role for UII in glucose homeostasis and diabetes although we cannot rule out the possibility that PER3 gene may underlie the reported associations.
Resumo:
Background: Hirschsprung disease is characterized by the absence of intramural ganglion cells in the enteric plexuses, due to a fail during enteric nervous system formation. Hirschsprung has a complex genetic aetiology and mutations in several genes have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. In this study, we have looked for CNVs in some of the genes related to Hirschsprung (EDNRB, GFRA1, NRTN and PHOX2B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. Methods: CNVs screening was performed in 208 HSCR patients using a self-designed set of MLPA probes, covering the coding region of those genes. Results: A deletion comprising the first 4 exons in GFRA1 gene was detected in 2 sporadic HSCR patients and in silico approaches have shown that the critical translation initiation signal in the mutant gene was abolished. In this study, we have been able to validate the reliability of this technique for CNVs screening in HSCR. Conclusions: The implemented MLPA based technique presented here allows CNV analysis of genes involved in HSCR that have not been not previously evaluated. Our results indicate that CNVs could be implicated in the pathogenesis of HSCR, although they seem to be an uncommon molecular cause of HSCR.
Resumo:
INTRODUCTION Genome-wide association studies of rheumatoid arthritis (RA) have identified an association of the disease with a 6q23 region devoid of genes. TNFAIP3, an RA candidate gene, flanks this region, and polymorphisms in both the TNFAIP3 gene and the intergenic region are associated with systemic lupus erythematosus. We hypothesized that there is a similar association with RA, including polymorphisms in TNFAIP3 and the intergenic region. METHODS To test this hypothesis, we selected tag-single nucleotide polymorphisms (SNPs) in both loci. They were analyzed in 1,651 patients with RA and 1,619 control individuals of Spanish ancestry. RESULTS Weak evidence of association was found both in the 6q23 intergenic region and in the TNFAIP3 locus. The rs582757 SNP and a common haplotype in the TNFAIP3 locus exhibited association with RA. In the intergenic region, two SNPs were associated, namely rs609438 and rs13207033. The latter was only associated in patients with anti-citrullinated peptide antibodies. Overall, statistical association was best explained by the interdependent contribution of SNPs from the two loci TNFAIP3 and the 6q23 intergenic region. CONCLUSIONS Our data are consistent with the hypothesis that several RA genetic factors exist in the 6q23 region, including polymorphisms in the TNFAIP3 gene, like that previously described for systemic lupus erythematosus.
Resumo:
BACKGROUND The role of genes involved in the control of progression from the G1 to the S phase of the cell cycle in melanoma tumors in not fully known. The aim of our study was to analyse mutations in TP53, CDKN1A, CDKN2A, and CDKN2B genes in melanoma tumors and melanoma cell lines METHODS We analysed 39 primary and metastatic melanomas and 9 melanoma cell lines by single-stranded conformational polymorphism (SSCP). RESULTS The single-stranded technique showed heterozygous defects in the TP53 gene in 8 of 39 (20.5%) melanoma tumors: three new single point mutations in intronic sequences (introns 1 and 2) and exon 10, and three new single nucleotide polymorphisms located in introns 1 and 2 (C to T transition at position 11701 in intron 1; C insertion at position 11818 in intron 2; and C insertion at position 11875 in intron 2). One melanoma tumor exhibited two heterozygous alterations in the CDKN2A exon 1 one of which was novel (stop codon, and missense mutation). No defects were found in the remaining genes. CONCLUSION These results suggest that these genes are involved in melanoma tumorigenesis, although they may be not the major targets. Other suppressor genes that may be informative of the mechanism of tumorigenesis in skin melanomas should be studied.
Resumo:
Caveolae are involved in physical compartmentalization between different groups of signaling events. Its main component, CAV1, modulates different pathways in cellular physiology. The emerging evidence pointing to the role of CAV1 in cancer led us to study whether different alleles of this gene are associated with colorectal cancer (CRC). Since one of the most characterized enzymes regulated by CAV1 is eNOS, we decided to include both genes in this study. We analyzed five SNPs in 360 unrelated CRC patients and 550 controls from the general population. Two of these SNPs were located within eNOS and three within the CAV1 gene. Although haplotype distribution was not associated with CRC, haplotype TiA (CAV1) was associated with familiar forms of CRC (p<0.05). This was especially evident in CRC antecedents and nuclear forms of CRC. If both CG (eNOS) and TiA (CAV1) haplotypes were taken together, this association increased in significance. Thus, we propose that CAV1, either alone or together with eNOS alleles, might modify CRC heritability.
Resumo:
BACKGROUND. The phenomenon of misdiagnosing tuberculosis (TB) by laboratory cross-contamination when culturing Mycobacterium tuberculosis (MTB) has been widely reported and it has an obvious clinical, therapeutic and social impact. The final confirmation of a cross-contamination event requires the molecular identification of the same MTB strain cultured from both the potential source of the contamination and from the false-positive candidate. The molecular tool usually applied in this context is IS6110-RFLP which takes a long time to provide an answer, usually longer than is acceptable for microbiologists and clinicians to make decisions. Our purpose in this study is to evaluate a novel PCR-based method, MIRU-VNTR as an alternative to assure a rapid and optimized analysis of cross-contamination alerts. RESULTS. MIRU-VNTR was prospectively compared with IS6110-RFLP for clarifying 19 alerts of false positivity from other laboratories. MIRU-VNTR highly correlated with IS6110-RFLP, reduced the response time by 27 days and clarified six alerts unresolved by RFLP. Additionally, MIRU-VNTR revealed complex situations such as contamination events involving polyclonal isolates and a false-positive case due to the simultaneous cross-contamination from two independent sources. CONCLUSION. Unlike standard RFLP-based genotyping, MIRU-VNTR i) could help reduce the impact of a false positive diagnosis of TB, ii) increased the number of events that could be solved and iii) revealed the complexity of some cross-contamination events that could not be dissected by IS6110-RFLP.
Resumo:
Hirschsprung disease (HSCR, OMIM 142623) is a developmental disorder characterized by the absence of ganglion cells along variable lengths of the distal gastrointestinal tract, which results in tonic contraction of the aganglionic gut segment and functional intestinal obstruction. The RET proto-oncogene is the major gene for HSCR with differential contributions of its rare and common, coding and noncoding mutations to the multifactorial nature of this pathology. Many other genes have been described to be associated with the pathology, as NRG1 gene (8p12), encoding neuregulin 1, which is implicated in the development of the enteric nervous system (ENS), and seems to contribute by both common and rare variants. Here we present the results of a comprehensive analysis of the NRG1 gene in the context of the disease in a series of 207 Spanish HSCR patients, by both mutational screening of its coding sequence and evaluation of 3 common tag SNPs as low penetrance susceptibility factors, finding some potentially damaging variants which we have functionally characterized. All of them were found to be associated with a significant reduction of the normal NRG1 protein levels. The fact that those mutations analyzed alter NRG1 protein would suggest that they would be related with HSCR disease not only in Chinese but also in a Caucasian population, which reinforces the implication of NRG1 gene in this pathology.
Resumo:
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2(nd) SRCR domain with susceptibility to MS (P max(T) permutation = 1×10(-4)). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+) naïve cells, P = 0.0001; CD8(+) naïve cells, P<0.0001; CD4(+) and CD8(+) central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+) and CD8(+) T cells.