1 resultado para Image Processing computerassisted
Filtro por publicador
- Repository Napier (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Applied Math and Science Education Repository - Washington - USA (12)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (34)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (8)
- Brock University, Canada (3)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CentAUR: Central Archive University of Reading - UK (27)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (21)
- Cochin University of Science & Technology (CUSAT), India (24)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (105)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Dalarna University College Electronic Archive (12)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (45)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (28)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (2)
- Open Access Repository of Indian Theses (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RDBU - Repositório Digital da Biblioteca da Unisinos (5)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (24)
- Repositório da Produção Científica e Intelectual da Unicamp (8)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (123)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (16)
- Scielo Saúde Pública - SP (11)
- Scielo Uruguai (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (26)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (30)
- Universitat de Girona, Spain (73)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (147)
- Université de Montréal, Canada (11)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (36)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper addresses a fully automatic landmarks detection method for breast reconstruction aesthetic assessment. The set of landmarks detected are the supraesternal notch (SSN), armpits, nipples, and inframammary fold (IMF). These landmarks are commonly used in order to perform anthropometric measurements for aesthetic assessment. The methodological approach is based on both illumination and morphological analysis. The proposed method has been tested with 21 images. A good overall performance is observed, although several improvements must be achieved in order to refine the detection of nipples and SSNs.