4 resultados para Idiosyncratic kurtosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antibiotics used by general practitioners frequently appear in adverse-event reports of drug-induced hepatotoxicity. Most cases are idiosyncratic (the adverse reaction cannot be predicted from the drug's pharmacological profile or from pre-clinical toxicology tests) and occur via an immunological reaction or in response to the presence of hepatotoxic metabolites. With the exception of trovafloxacin and telithromycin (now severely restricted), hepatotoxicity crude incidence remains globally low but variable. Thus, amoxicillin/clavulanate and co-trimoxazole, as well as flucloxacillin, cause hepatotoxic reactions at rates that make them visible in general practice (cases are often isolated, may have a delayed onset, sometimes appear only after cessation of therapy and can produce an array of hepatic lesions that mirror hepatobiliary disease, making causality often difficult to establish). Conversely, hepatotoxic reactions related to macrolides, tetracyclines and fluoroquinolones (in that order, from high to low) are much rarer, and are identifiable only through large-scale studies or worldwide pharmacovigilance reporting. For antibiotics specifically used for tuberculosis, adverse effects range from asymptomatic increases in liver enzymes to acute hepatitis and fulminant hepatic failure. Yet, it is difficult to single out individual drugs, as treatment always entails associations. Patients at risk are mainly those with previous experience of hepatotoxic reaction to antibiotics, the aged or those with impaired hepatic function in the absence of close monitoring, making it important to carefully balance potential risks with expected benefits in primary care. Pharmacogenetic testing using the new genome-wide association studies approach holds promise for better understanding the mechanism(s) underlying hepatotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite stringent requirements for drug development imposed by regulatory agencies, drug-induced liver injury (DILI) is an increasing health problem and a significant cause for failure to approve drugs, market withdrawal of commercialized medications, and adoption of regulatory measures. The pathogenesis is yet undefined, though the rare occurrence of idiosyncratic DILI (1/100,000–1/10,000) and the fact that hepatotoxicity often recurs after re-exposure to the culprit drug under different environmental conditions strongly points toward a major role for genetic variations in the underlying mechanism and susceptibility. Pharmacogenetic studies in DILI have to a large extent focused on genes involved in drug metabolism, as polymorphisms in these genes may generate increased plasma drug concentrations as well as lower clearance rates when treated with standard medication doses. A range of studies have identified a number of genetic variants in drug metabolism Phase I, II, and III genes, including cytochrome P450 (CYP) 2E1, N-acetyltransferase 2, UDP-glucuronosyltransferase 2B7, glutathione S-transferase M1/T1, ABCB11, and ABCC2, that enhance DILI susceptibility (Andrade et al., 2009; Agundez et al., 2011). Several metabolic gene variants, such as CYP2E1c1 and NAT2 slow, have been associated with DILI induced by specific drugs based on individual drug metabolism information. Others, such as GSTM1 and T1 null alleles have been associated with enhanced risk of DILI development induced by a large range of drugs. Hence, these variants appear to have a more general role in DILI susceptibility due to their role in reducing the cell's antioxidative capacity (Lucena et al., 2008). Mitochondrial superoxide dismutase (SOD2) and glutathione peroxidase 1 (GPX1) are two additional enzymes involved in combating oxidative stress, with specific genetic variants shown to enhance the risk of developing DILI

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Pressure ulcers are considered an important issue, mainly affecting immobilized older patients. These pressure ulcers increase the care burden for the professional health service staff as well as pharmaceutical expenditure. There are a number of studies on the effectiveness of different products used for the prevention of pressure ulcers; however, most of these studies were carried out at a hospital level, basically using hyperoxygenated fatty acids (HOFA). There are no studies focused specifically on the use of olive-oil-based products and therefore this research is intended to find the most cost-effective treatment and achieve an alternative treatment. METHODS/DESIGN The main objective is to assess the effectiveness of olive oil, comparing it with HOFA, to treat immobilized patients at home who are at risk of pressure ulcers. As a secondary objective, the cost-effectiveness balance of this new application with regard to the HOFA will be assessed. The study is designed as a noninferiority, triple-blinded, parallel, multi-center, randomized clinical trial. The scope of the study is the population attending primary health centers in Andalucía (Spain) in the regional areas of Malaga, Granada, Seville, and Cadiz. Immobilized patients at risk of pressure ulcers will be targeted. The target group will be treated by application of an olive-oil-based formula whereas the control group will be treated by application of HOFA to the control group. The follow-up period will be 16 weeks. The main variable will be the presence of pressure ulcers in the patient. Secondary variables include sociodemographic and clinical information, caregiver information, and whether technical support exists. Statistical analysis will include the Kolmogorov-Smirnov test, symmetry and kurtosis analysis, bivariate analysis using the Student's t and chi-squared tests as well as the Wilcoxon and the Man-Whitney U tests, ANOVA and multivariate logistic regression analysis. DISCUSSION The regular use of olive-oil-based formulas should be effective in preventing pressure ulcers in immobilized patients, thus leading to a more cost-effective product and an alternative treatment. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT01595347.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS Hy's Law, which states that hepatocellular drug-induced liver injury (DILI) with jaundice indicates a serious reaction, is used widely to determine risk for acute liver failure (ALF). We aimed to optimize the definition of Hy's Law and to develop a model for predicting ALF in patients with DILI. METHODS We collected data from 771 patients with DILI (805 episodes) from the Spanish DILI registry, from April 1994 through August 2012. We analyzed data collected at DILI recognition and at the time of peak levels of alanine aminotransferase (ALT) and total bilirubin (TBL). RESULTS Of the 771 patients with DILI, 32 developed ALF. Hepatocellular injury, female sex, high levels of TBL, and a high ratio of aspartate aminotransferase (AST):ALT were independent risk factors for ALF. We compared 3 ways to use Hy's Law to predict which patients would develop ALF; all included TBL greater than 2-fold the upper limit of normal (×ULN) and either ALT level greater than 3 × ULN, a ratio (R) value (ALT × ULN/alkaline phosphatase × ULN) of 5 or greater, or a new ratio (nR) value (ALT or AST, whichever produced the highest ×ULN/ alkaline phosphatase × ULN value) of 5 or greater. At recognition of DILI, the R- and nR-based models identified patients who developed ALF with 67% and 63% specificity, respectively, whereas use of only ALT level identified them with 44% specificity. However, the level of ALT and the nR model each identified patients who developed ALF with 90% sensitivity, whereas the R criteria identified them with 83% sensitivity. An equal number of patients who did and did not develop ALF had alkaline phosphatase levels greater than 2 × ULN. An algorithm based on AST level greater than 17.3 × ULN, TBL greater than 6.6 × ULN, and AST:ALT greater than 1.5 identified patients who developed ALF with 82% specificity and 80% sensitivity. CONCLUSIONS When applied at DILI recognition, the nR criteria for Hy's Law provides the best balance of sensitivity and specificity whereas our new composite algorithm provides additional specificity in predicting the ultimate development of ALF.