2 resultados para Hybrid imprinted membrane


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune-mediated nephritis contributes to disease in systemic lupus erythematosus, Goodpasture syndrome (caused by antibodies specific for glomerular basement membrane [anti-GBM antibodies]), and spontaneous lupus nephritis. Inbred mouse strains differ in susceptibility to anti-GBM antibody-induced and spontaneous lupus nephritis. This study sought to clarify the genetic and molecular factors that maybe responsible for enhanced immune-mediated renal disease in these models. When the kidneys of 3 mouse strains sensitive to anti-GBM antibody-induced nephritis were compared with those of 2 control strains using microarray analysis, one-fifth of the underexpressed genes belonged to the kallikrein gene family,which encodes serine esterases. Mouse strains that upregulated renal and urinary kallikreins exhibited less evidence of disease. Antagonizing the kallikrein pathway augmented disease, while agonists dampened the severity of anti-GBM antibody-induced nephritis. In addition, nephritis-sensitive mouse strains had kallikrein haplotypes that were distinct from those of control strains, including several regulatory polymorphisms,some of which were associated with functional consequences. Indeed, increased susceptibility to anti-GBM antibody-induced nephritis and spontaneous lupus nephritis was achieved by breeding mice with a genetic interval harboring the kallikrein genes onto a disease-resistant background. Finally, both human SLE and spontaneous lupus nephritis were found to be associated with kallikrein genes, particularly KLK1 and the KLK3 promoter, when DNA SNPs from independent cohorts of SLE patients and controls were compared. Collectively, these studies suggest that kallikreins are protective disease-associated genes in anti-GBM antibody-induced nephritis and lupus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recognition of pathogen-derived structures by C-type lectins and the chemotactic activity mediated by the CCL2/CCR2 axis are critical steps in determining the host immune response to fungi. The present study was designed to investigate whether the presence of single nucleotide polymorphisms (SNPs) within DC-SIGN, Dectin-1, Dectin-2, CCL2 and CCR2 genes influence the risk of developing Invasive Pulmonary Aspergillosis (IPA). Twenty-seven SNPs were selected using a hybrid functional/tagging approach and genotyped in 182 haematological patients, fifty-seven of them diagnosed with proven or probable IPA according to the 2008 EORTC/MSG criteria. Association analysis revealed that carriers of the Dectin-1(rs3901533 T/T) and Dectin-1(rs7309123 G/G) genotypes and DC-SIGN(rs4804800 G), DC-SIGN(rs11465384 T), DC-SIGN(7248637 A) and DC-SIGN(7252229 C) alleles had a significantly increased risk of IPA infection (OR = 5.59 95%CI 1.37-22.77; OR = 4.91 95%CI 1.52-15.89; OR = 2.75 95%CI 1.27-5.95; OR = 2.70 95%CI 1.24-5.90; OR = 2.39 95%CI 1.09-5.22 and OR = 2.05 95%CI 1.00-4.22, respectively). There was also a significantly increased frequency of galactomannan positivity among patients carrying the Dectin-1(rs3901533_T) allele and Dectin-1(rs7309123_G/G) genotype. In addition, healthy individuals with this latter genotype showed a significantly decreased level of Dectin-1 mRNA expression compared to C-allele carriers, suggesting a role of the Dectin-1(rs7309123) polymorphism in determining the levels of Dectin-1 and, consequently, the level of susceptibility to IPA infection. SNP-SNP interaction (epistasis) analysis revealed significant interactions models including SNPs in Dectin-1, Dectin-2, CCL2 and CCR2 genes, with synergistic genetic effects. Although these results need to be further validated in larger cohorts, they suggest that Dectin-1, DC-SIGN, Dectin-2, CCL2 and CCR2 genetic variants influence the risk of IPA infection and might be useful in developing a risk-adapted prophylaxis.