3 resultados para Hyaluronidases and hyaluronan synthases
Resumo:
Hearing loss in Meniere's disease (MD) is associated with loss of spiral ganglion neurons and hair cells. In a guinea pig model of endolymphatic hydrops, nitric oxide synthases (NOS) and oxidative stress mediate loss of spiral ganglion neurons. To test the hypothesis that functional variants of NOS1 and NOS2A are associated with MD, wed genotyped three functional variants of NOS1 (rs41279104,rs2682826, and a cytosine-adenosine microsatellite repeat in exon 1f) and the CCTTT repeat in the promoter of NOS2A gene (rs3833912) in two independent MD sets(273 patients in total) and 550 controls. A third cohort of American patients was genotyped as replication cohort for the CCTTT repeat. Neither allele nor genotype frequencies of rs41279104 and rs2682826 were associated with MD, although longer alleles of the cytosine-adenosine microsatellite repeat were marginally significant (corrected p = 0.05) in the Mediterranean cohort but not in a second Galicia cohort. Shorter numbers of the CCTTT repeat in NOS2A were significantly more frequent in Galicia controls (OR = 0.37 [CI, 0.18-0.76], corrected p =0.04), but this finding could not be replicated in Mediterranean or American case-control populations. Meta-analysis did not support an association between CCTTT repeats and risk for MD. Severe hearing loss (>75 dB) was also not associated with any functional variants studied. Functional variants of NOS1 and and NOS2A do not confer susceptibility for MD.
Resumo:
It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT) produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties. DESIGN Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation. RESULTS We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1alpha, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARgamma1/gamma2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus. CONCLUSION Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new fat has acquired in research in relation to adipogenesis and angiogenesis.
Resumo:
NFAT (nuclear factors of activated T cells) proteins constitute a family of transcription factors involved in mediating signal transduction. The presence of NFAT isoforms has been described in all cell types of the immune system, with the exception of neutrophils. In the present work we report for the first time the expression in human neutrophils of NFAT2 mRNA and protein. We also report that specific antigens were able to promote NFAT2 protein translocation to the nucleus, an effect that was mimicked by the treatment of neutrophils with anti-immunoglobulin E (anti-IgE) or anti-Fcepsilon-receptor antibodies. Antigens, anti-IgE and anti-FcepsilonRs also increased Ca2+ release and the intracellular activity of calcineurin, which was able to interact physically with NFAT2, in parallel to eliciting an enhanced NFAT2 DNA-binding activity. In addition, specific chemical inhibitors of the NFAT pathway, such as cyclosporin A and VIVIT peptide, abolished antigen and anti-IgE-induced cyclooxygenase-2 (COX2) gene upregulation and prostaglandin (PGE(2)) release, suggesting that this process is through NFAT. Our results provide evidence that NFAT2 is constitutively expressed in human neutrophils, and after IgE-dependent activation operates as a transcription factor in the modulation of genes, such as COX2, during allergic inflammation.