2 resultados para Human aspects


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Celiac disease (CD) is a common autoimmune disorder characterized by an immune response to ingested gluten and has a strong HLA association with HLA-DQ2 and HLA-DQ8 molecules, but human HLA-DQ risk factors do not explain the entire genetic susceptibility to gluten intolerance. CD is caused by the lack of immune tolerance (oral tolerance) to wheat gluten. In this sense, the expression of soluble HLA-G in CD is of special interest because the molecule plays an important role in the induction of immune tolerance. The enhanced expression of soluble HLA-G found in CD may be part of a mechanism to restore the gluten intolerance. In this editorial, we review recent progress in understanding CD in relation to its prevalence, diagnosis and possible mechanisms of pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Adipose tissue is a key regulator of energy balance playing an active role in lipid storage and may be a dynamic buffer to control fatty acid flux. Just like PPARgamma, fatty acid synthesis enzymes such as FASN have been implicated in almost all aspects of human metabolic alterations such as obesity, insulin resistance or dyslipemia. The aim of this work is to investigate how FASN and PPARgamma expression in human adipose tissue is related to carbohydrate metabolism dysfunction and obesity. METHODS The study included eighty-seven patients which were classified according to their BMI and to their glycaemia levels in order to study FASN and PPARgamma gene expression levels, anthropometric and biochemical variables. RESULTS The main result of this work is the close relation between FASN expression level and the factors that lead to hyperglycemic state (increased values of glucose levels, HOMA-IR, HbA1c, BMI and triglycerides). The correlation of the enzyme with these parameters is inversely proportional. On the other hand, PPARgamma is not related to carbohydrate metabolism. CONCLUSIONS We can demonstrate that FASN expression is a good candidate to study the pathophysiology of type II diabetes and obesity in humans.