2 resultados para Gtpase-activating Protein


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2-/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca(2)(+) elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca(2)(+)/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucokinase is essential for glucose-stimulated insulin release from the pancreatic beta-cell, serving as glucose sensor in humans. Inactivating or activating mutations of glucokinase lead to different forms of glucokinase disease, i.e. GCK-monogenic diabetes of youth, permanent neonatal diabetes (inactivating mutations), and congenital hyperinsulinism, respectively. Here we present a novel glucokinase gene (GCK)-activating mutation (p.E442K) found in an infant with neonatal hypoglycemia (1.5 mmol/liter) and in two other family members suffering from recurrent hypoglycemic episodes in their childhood and adult life. In contrast to the severe clinical presentation in the index case, functional studies showed only a slight activation of the protein (relative activity index of 3.3). We also report on functional studies of two inactivating mutations of the GCK (p.E440G and p.S441W), contiguous to the activating one, that lead to monogenic diabetes of youth. Interestingly, adult family members carrying the GCK pE440G mutation show an unusually heterogeneous and progressive diabetic phenotype, a feature not typical of GCK-monogenic diabetes of youth. In summary, we identified a novel activating GCK mutation that although being associated with severe neonatal hypoglycemia is characterized by the mildest activation of the glucokinase enzyme of all previously reported.