3 resultados para Gray Matter
Resumo:
The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.
Resumo:
BACKGROUND Type 2 diabetes mellitus (T2DM) is an emerging risk factor for cognitive impairment. Whether this impairment is a direct effect of this metabolic disorder on brain function, a consequence of vascular disease, or both, remains unknown. Structural and functional neuroimaging studies in patients with T2DM could help to elucidate this question. OBJECTIVE We designed a cross-sectional study comparing 25 T2DM patients with 25 age- and gender-matched healthy control participants. Clinical information, APOE genotype, lipid and glucose analysis, structural cerebral magnetic resonance imaging including voxel-based morphometry, and F-18 fluorodeoxyglucose positron emission tomography were obtained in all subjects. METHODS Gray matter densities and metabolic differences between groups were analyzed using statistical parametric mapping. In addition to comparing the neuroimaging profiles of both groups, we correlated neuroimaging findings with HbA1c levels, duration of T2DM, and insulin resistance measurement (HOMA-IR) in the diabetic patients group. Results: Patients with T2DM presented reduced gray matter densities and reduced cerebral glucose metabolism in several fronto-temporal brain regions after controlling for various vascular risk factors. Furthermore, within the T2DM group, longer disease duration, and higher HbA1c levels and HOMA-IR were associated with lower gray matter density and reduced cerebral glucose metabolism in fronto-temporal regions. CONCLUSION In agreement with previous reports, our findings indicate that T2DM leads to structural and metabolic abnormalities in fronto-temporal areas. Furthermore, they suggest that these abnormalities are not entirely explained by the role of T2DM as a cardiovascular risk factor.
Resumo:
The role of lysophosphatidic acid (LPA) in the control of emotional behavior remains to be determined. We analyzed the effects of the central administration of 1-oleoyl-LPA (LPA 18∶1) in rats tested for food consumption and anxiety-like and depression-like behaviors. For this purpose, the elevated plus-maze, open field, Y maze, forced swimming and food intake tests were performed. In addition, c-Fos expression in the dorsal periaqueductal gray matter (DPAG) was also determined. The results revealed that the administration of LPA 18∶1 reduced the time in the open arms of the elevated plus-maze and induced hypolocomotion in the open field, suggesting an anxiogenic-like phenotype. Interestingly, these effects were present following LPA 18∶1 infusion under conditions of novelty but not under habituation conditions. In the forced swimming test, the administration of LPA 18∶1 dose-dependently increased depression-like behavior, as evaluated according to immobility time. LPA treatment induced no effects on feeding. However, the immunohistochemical analysis revealed that LPA 18∶1 increased c-Fos expression in the DPAG. The abundant expression of the LPA1 receptor, one of the main targets for LPA 18∶1, was detected in this brain area, which participates in the control of emotional behavior, using immunocytochemistry. These findings indicate that LPA is a relevant transmitter potentially involved in normal and pathological emotional responses, including anxiety and depression.