5 resultados para Federal Interagency Forum on Aging-Related Statistics (U.S.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Ovarian carcinoma is the most important cause of gynecological cancer-related mortality in Western societies. Despite the improved median overall survival in patients receiving chemotherapy regimens such as paclitaxel and carboplatin combination, relapse still occurs in most advanced diseased patients. Increased angiogenesis is associated with rapid recurrence and decreased survival in ovarian cancer. This study was planned to identify an angiogenesis-related gene expression profile with prognostic value in advanced ovarian carcinoma patients. METHODOLOGY/PRINCIPAL FINDINGS RNAs were collected from formalin-fixed paraffin-embedded samples of 61 patients with III/IV FIGO stage ovarian cancer who underwent surgical cytoreduction and received a carboplatin plus paclitaxel regimen. Expression levels of 82 angiogenesis related genes were measured by quantitative real-time polymerase chain reaction using TaqMan low-density arrays. A 34-gene-profile which was able to predict the overall survival of ovarian carcinoma patients was identified. After a leave-one-out cross validation, the profile distinguished two groups of patients with different outcomes. Median overall survival and progression-free survival for the high risk group was 28.3 and 15.0 months, respectively, and was not reached by patients in the low risk group at the end of follow-up. Moreover, the profile maintained an independent prognostic value in the multivariate analysis. The hazard ratio for death was 2.3 (95% CI, 1.5 to 3.2; p<0.001). CONCLUSIONS/SIGNIFICANCE It is possible to generate a prognostic model for advanced ovarian carcinoma based on angiogenesis-related genes using formalin-fixed paraffin-embedded samples. The present results are consistent with the increasing weight of angiogenesis genes in the prognosis of ovarian carcinoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search of new health management formulas focused to give wide services is one of the priorities of our present health policies. Those formulas examine the optimization of the links between the main actors involved in public health, ie, users, professionals, local socio-political and corporate agents. This paper is aimed to introduce the Social Network Analysis as a method for analyzing, measuring and interpreting those connections. The knowledge of people's relationships (what is called social networks) in the field of public health is becoming increasingly important at an international level. In fact, countries such as UK, Netherlands, Italy, Australia and U.S. are looking formulas to apply this knowledge to their health departments. With this work we show the utility of the ARS on topics related to sustainability of the health system, particularly those related with health habits and social support, topics included in the 2020 health strategies that underline the importance of the collaborative aspects in networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION Obesity is an unfavorable prognostic factor in breast cancer (BC) patients regardless of menopausal status and treatment received. However, the association between obesity and survival outcome by pathological subtype requires further clarification. METHODS We performed a retrospective analysis including 5,683 operable BC patients enrolled in four randomized clinical trials (GEICAM/9906, GEICAM/9805, GEICAM/2003-02, and BCIRG 001) evaluating anthracyclines and taxanes as adjuvant treatments. Our primary aim was to assess the prognostic effect of body mass index (BMI) on disease recurrence, breast cancer mortality (BCM), and overall mortality (OM). A secondary aim was to detect differences of such prognostic effects by subtype. RESULTS Multivariate survival analyses adjusting for age, tumor size, nodal status, menopausal status, surgery type, histological grade, hormone receptor status, human epidermal growth factor receptor 2 (HER2) status, chemotherapy regimen, and under-treatment showed that obese patients (BMI 30.0 to 34.9) had similar prognoses to that of patients with a BMI < 25 (reference group) in terms of recurrence (Hazard Ratio [HR] = 1.08, 95% Confidence Interval [CI] = 0.90 to 1.30), BCM (HR = 1.02, 0.81 to 1.29), and OM (HR = 0.97, 0.78 to 1.19). Patients with severe obesity (BMI ≥ 35) had a significantly increased risk of recurrence (HR = 1.26, 1.00 to 1.59, P = 0.048), BCM (HR = 1.32, 1.00 to 1.74, P = 0.050), and OM (HR = 1.35, 1.06 to 1.71, P = 0.016) compared to our reference group. The prognostic effect of severe obesity did not vary by subtype. CONCLUSIONS Severely obese patients treated with anthracyclines and taxanes present a worse prognosis regarding recurrence, BCM, and OM than patients with BMI < 25. The magnitude of the harmful effect of BMI on survival-related outcomes was similar across subtypes.