7 resultados para FUNCTIONAL GASTROINTESTINAL DISORDERS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND Cabazitaxel is approved in patients with metastatic hormone-refractory prostate cancer previously treated with a docetaxel-containing regimen. This study evaluated a weekly cabazitaxel dosing regimen. Primary objectives were to report dose-limiting toxicities (DLTs) and to determine the maximum tolerated dose (MTD). Efficacy, safety and pharmacokinetics were secondary objectives. METHODS Cabazitaxel was administered weekly (1-hour intravenous infusion at 1.5-12 mg/m2 doses) for the first 4 weeks of a 5-week cycle in patients with solid tumours. Monitoring of DLTs was used to determine the MTD and the recommended weekly dose. RESULTS Thirty-one patients were enrolled. Two of six patients experienced DLTs at 12 mg/m2, which was declared the MTD. Gastrointestinal disorders were the most common adverse event. Eight patients developed neutropenia (three ≥ Grade 3); one occurrence of febrile neutropenia was reported. There were two partial responses (in breast cancer) and 13 patients had stable disease (median duration of 3.3 months). Increases in Cmax and AUC0-t were dose proportional for the 6-12 mg/m2 doses. CONCLUSION The MTD of weekly cabazitaxel was 12 mg/m2 and the recommended weekly dose was 10 mg/m2. The observed safety profile and antitumour activity of cabazitaxel were consistent with those observed with other taxanes in similar dosing regimens. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov as NCT01755390.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Europe, the combination of plerixafor + granulocyte colony-stimulating factor is approved for the mobilization of hematopoietic stem cells for autologous transplantation in patients with lymphoma and myeloma whose cells mobilize poorly. The purpose of this study was to further assess the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization in European patients with lymphoma or myeloma. In this multicenter, open label, single-arm study, patients received granulocyte colony-stimulating factor (10 μg/kg/day) subcutaneously for 4 days; on the evening of day 4 they were given plerixafor (0.24 mg/kg) subcutaneously. Patients underwent apheresis on day 5 after a morning dose of granulocyte colony-stimulating factor. The primary study objective was to confirm the safety of mobilization with plerixafor. Secondary objectives included assessment of efficacy (apheresis yield, time to engraftment). The combination of plerixafor + granulocyte colony-stimulating factor was used to mobilize hematopoietic stem cells in 118 patients (90 with myeloma, 25 with non-Hodgkin's lymphoma, 3 with Hodgkin's disease). Treatment-emergent plerixafor-related adverse events were reported in 24 patients. Most adverse events occurred within 1 hour after injection, were grade 1 or 2 in severity and included gastrointestinal disorders or injection-site reactions. The minimum cell yield (≥ 2 × 10(6) CD34(+) cells/kg) was harvested in 98% of patients with myeloma and in 80% of those with non-Hodgkin's lymphoma in a median of one apheresis. The optimum cell dose (≥ 5 × 10(6) CD34(+) cells/kg for non-Hodgkin's lymphoma or ≥ 6 × 10(6) CD34(+) cells/kg for myeloma) was harvested in 89% of myeloma patients and 48% of non-Hodgkin's lymphoma patients. In this prospective, multicenter European study, mobilization with plerixafor + granulocyte colony-stimulating factor allowed the majority of patients with myeloma or non-Hodgkin's lymphoma to undergo transplantation with minimal toxicity, providing further data supporting the safety and efficacy of plerixafor + granulocyte colony-stimulating factor for front-line mobilization of hematopoietic stem cells in patients with non-Hodgkin's lymphoma or myeloma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hearing loss in Meniere's disease (MD) is associated with loss of spiral ganglion neurons and hair cells. In a guinea pig model of endolymphatic hydrops, nitric oxide synthases (NOS) and oxidative stress mediate loss of spiral ganglion neurons. To test the hypothesis that functional variants of NOS1 and NOS2A are associated with MD, wed genotyped three functional variants of NOS1 (rs41279104,rs2682826, and a cytosine-adenosine microsatellite repeat in exon 1f) and the CCTTT repeat in the promoter of NOS2A gene (rs3833912) in two independent MD sets(273 patients in total) and 550 controls. A third cohort of American patients was genotyped as replication cohort for the CCTTT repeat. Neither allele nor genotype frequencies of rs41279104 and rs2682826 were associated with MD, although longer alleles of the cytosine-adenosine microsatellite repeat were marginally significant (corrected p = 0.05) in the Mediterranean cohort but not in a second Galicia cohort. Shorter numbers of the CCTTT repeat in NOS2A were significantly more frequent in Galicia controls (OR = 0.37 [CI, 0.18-0.76], corrected p =0.04), but this finding could not be replicated in Mediterranean or American case-control populations. Meta-analysis did not support an association between CCTTT repeats and risk for MD. Severe hearing loss (>75 dB) was also not associated with any functional variants studied. Functional variants of NOS1 and and NOS2A do not confer susceptibility for MD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The short bowel syndrome appears for the reduction of intestinal absorptive surface due to functional or anatomical loss of part of the small bowel. We present the case of a 35-year-old woman with severe short bowel syndrome secondary to acute intestinal ischemia in adults, who presented at 5 years of evolution episodes of dizziness with gait instability and loss of strength in hands. The diagnosis was D-lactic acidosis. D-lactic acidosis is a rare complication, but important for their symptoms, of this syndrome. It is due to a change in intestinal flora secondary to an overgrowth of lactic acid bacteria that produce D-lactate. D-lactic acidosis should be looked for in cases of metabolic acidosis in which the identity of acidosis is not apparent, neurological manifestations without focality and the patient has short bowel syndrome or patients who have had jejunoileal bypass surgery. Appropriate treatment usually results in resolution of neurologic symptoms and prevents or reduces further recurrences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE Endogenous uveitis is a major cause of visual loss mediated by the immune system. The protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene encodes a lymphoid-specific phosphatase that plays a key role in T-cell receptor (TCR) signaling. Two independent functional missense single nucleotide polymorphisms (SNPs) located within the PTPN22 gene (R263Q and R620W) have been associated with different autoimmune disorders. We aimed to analyze for the first time the influence of these PTPN22 genetic variants on endogenous non-anterior uveitis susceptibility. METHODS We performed a case-control study of 217 patients with endogenous non-anterior uveitis and 718 healthy controls from a Spanish population. The PTPN22 polymorphisms (rs33996649 and rs2476601) were genotyped using TaqMan allelic discrimination assays. The allele, genotype, carriers, and allelic combination frequencies were compared between cases and controls with χ(2) analysis or Fisher's exact test. RESULTS Our results showed no influence of the studied SNPs in the global susceptibility analysis (rs33996649: allelic P- value=0.92, odds ratio=0.97, 95% confidence interval=0.54-1.75; rs2476601: allelic P- value=0.86, odds ratio=1.04, 95% confidence interval=0.68-1.59). Similarly, the allelic combination analysis did not provide additional information. CONCLUSIONS Our results suggest that the studied polymorphisms of the PTPN22 gene do not play an important role in the pathophysiology of endogenous non-anterior uveitis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Type 2 diabetes mellitus (T2DM) is an emerging risk factor for cognitive impairment. Whether this impairment is a direct effect of this metabolic disorder on brain function, a consequence of vascular disease, or both, remains unknown. Structural and functional neuroimaging studies in patients with T2DM could help to elucidate this question. OBJECTIVE We designed a cross-sectional study comparing 25 T2DM patients with 25 age- and gender-matched healthy control participants. Clinical information, APOE genotype, lipid and glucose analysis, structural cerebral magnetic resonance imaging including voxel-based morphometry, and F-18 fluorodeoxyglucose positron emission tomography were obtained in all subjects. METHODS Gray matter densities and metabolic differences between groups were analyzed using statistical parametric mapping. In addition to comparing the neuroimaging profiles of both groups, we correlated neuroimaging findings with HbA1c levels, duration of T2DM, and insulin resistance measurement (HOMA-IR) in the diabetic patients group. Results: Patients with T2DM presented reduced gray matter densities and reduced cerebral glucose metabolism in several fronto-temporal brain regions after controlling for various vascular risk factors. Furthermore, within the T2DM group, longer disease duration, and higher HbA1c levels and HOMA-IR were associated with lower gray matter density and reduced cerebral glucose metabolism in fronto-temporal regions. CONCLUSION In agreement with previous reports, our findings indicate that T2DM leads to structural and metabolic abnormalities in fronto-temporal areas. Furthermore, they suggest that these abnormalities are not entirely explained by the role of T2DM as a cardiovascular risk factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare.