7 resultados para Event Detection
Resumo:
Background: Event-related potentials (ERPs) may be used as a highly sensitive way of detecting subtle degrees of cognitive dysfunction. On the other hand, impairment of cognitive skills is increasingly recognised as a hallmark of patients suffering from multiple sclerosis (MS). We sought to determine the psychophysiological pattern of information processing among MS patients with the relapsing-remitting form of the disease and low physical disability considered as two subtypes: 'typical relapsing-remitting' (RRMS) and 'benign MS' (BMS). Furthermore, we subjected our data to a cluster analysis to determine whether MS patients and healthy controls could be differentiated in terms of their psychophysiological profile.Methods: We investigated MS patients with RRMS and BMS subtypes using event-related potentials (ERPs) acquired in the context of a Posner visual-spatial cueing paradigm. Specifically, our study aimed to assess ERP brain activity in response preparation (contingent negative variation -CNV) and stimuli processing in MS patients. Latency and amplitude of different ERP components (P1, eN1, N1, P2, N2, P3 and late negativity -LN) as well as behavioural responses (reaction time -RT; correct responses -CRs; and number of errors) were analyzed and then subjected to cluster analysis. Results: Both MS groups showed delayed behavioural responses and enhanced latency for long-latency ERP components (P2, N2, P3) as well as relatively preserved ERP amplitude, but BMS patients obtained more important performance deficits (lower CRs and higher RTs) and abnormalities related to the latency (N1, P3) and amplitude of ERPs (eCNV, eN1, LN). However, RRMS patients also demonstrated abnormally high amplitudes related to the preparation performance period of CNV (cCNV) and post-processing phase (LN). Cluster analyses revealed that RRMS patients appear to make up a relatively homogeneous group with moderate deficits mainly related to ERP latencies, whereas BMS patients appear to make up a rather more heterogeneous group with more severe information processing and attentional deficits. Conclusions: Our findings are suggestive of a slowing of information processing for MS patients that may be a consequence of demyelination and axonal degeneration, which also seems to occur in MS patients that show little or no progression in the physical severity of the disease over time.
Resumo:
A new oligochromatographic assay, Speed-Oligo Novel Influenza A H1N1, was designed and optimized for the specific detection of the 2009 influenza A H1N1 virus. The assay is based on a PCR method coupled to detection of PCR products by means of a dipstick device. The target sequence is a 103-bp fragment within the hemagglutinin gene. The analytical sensitivity of the new assay was measured with serial dilutions of a plasmid that contained the target sequence, and we determined that down to one copy per reaction of the plasmid was reliably detected. Diagnostic performance was assessed with 103 RNAs from suspected cases (40 positive and 63 negative results) previously analyzed with a reference real-time PCR technique. All positive cases were confirmed, and no false-positive results were detected with the new assay. No cross-reactions were observed when other viral strains or clinical samples with other respiratory viruses were tested. According to these results, this new assay has 100% sensitivity and specificity. The turnaround time for the whole procedure was 140 min. The assay may be especially useful for the specific detection of 2009 H1N1 virus in laboratories not equipped with real-time PCR instruments
Resumo:
Influenza surveillance networks must detect early the viruses that will cause the forthcoming annual epidemics and isolate the strains for further characterization. We obtained the highest sensitivity (95.4%) with a diagnostic tool that combined a shell-vial assay and reverse transcription-PCR on cell culture supernatants at 48 h, and indeed, recovered the strain
Resumo:
Recovery of group B streptococci (GBS) was assessed in 1,204 vaginorectal swabs stored in Amies transport medium at 4 or 21°C for 1 to 4 days either by direct inoculation onto Granada agar (GA) or by culture in blood agar (BA) and GA after a selective broth enrichment (SBE) step. Following storage at 4°C, GBS detection in GA was not affected after 72 h by either direct inoculation or SBE; however, GBS were not detected after SBE in the BA subculture in some samples after 48 h of storage and in GA after 96 h. After storage at 21°C, loss of GBS-positive results was significant after 48 h by direct inoculation in GA and after 96 h by SBE and BA subculture; some GBS-positive samples were not detected after 24 h of storage followed by SBE and BA subculture or after 48 h of storage followed by SBE and GA subculture. Storage of swabs in transport medium, even at 4°C, produced after 24 h an underestimation of the intensity of GBS colonization in most specimens. These data indicate that viability of GBS is not fully preserved by storage of vaginorectal swabs in Amies transport medium, mainly if they are not stored under refrigeration
Resumo:
Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection.
Resumo:
Objectives. To study the utility of the Mini-Cog test for detection of patients with cognitive impairment (CI) in primary care (PC). Methods. We pooled data from two phase III studies conducted in Spain. Patients with complaints or suspicion of CI were consecutively recruited by PC physicians. The cognitive diagnosis was performed by an expert neurologist, after formal neuropsychological evaluation. The Mini-Cog score was calculated post hoc, and its diagnostic utility was evaluated and compared with the utility of the Mini-Mental State (MMS), the Clock Drawing Test (CDT), and the sum of the MMS and the CDT (MMS + CDT) using the area under the receiver operating characteristic curve (AUC). The best cut points were obtained on the basis of diagnostic accuracy (DA) and kappa index. Results. A total sample of 307 subjects (176 CI) was analyzed. The Mini-Cog displayed an AUC (±SE) of 0.78 ± 0.02, which was significantly inferior to the AUC of the CDT (0.84 ± 0.02), the MMS (0.84 ± 0.02), and the MMS + CDT (0.86 ± 0.02). The best cut point of the Mini-Cog was 1/2 (sensitivity 0.60, specificity 0.90, DA 0.73, and kappa index 0.48 ± 0.05). Conclusions. The utility of the Mini-Cog for detection of CI in PC was very modest, clearly inferior to the MMS or the CDT. These results do not permit recommendation of the Mini-Cog in PC.
Resumo:
Some sites of extrapulmonary tuberculosis and focal complications of brucellosis are very difficult to differentiate clinically, radiologically, and even histopathologically. Conventional microbiological methods for the diagnosis of extrapulmonary tuberculosis and complicated brucellosis not only lack adequate sensitivity, they are also time consuming, which could lead to an unfavourable prognosis. The aim of this work was to develop a multiplex real-time PCR assay based on SYBR Green I to simultaneously detect Brucella spp and Mycobacterium tuberculosis complex and evaluate the efficacy of the technique with different candidate genes. The IS711, bcsp31 and omp2a genes were used for the identification of Brucella spp and the IS6110, senX3-regX3 and cfp31 genes were targeted for the detection of the M. tuberculosis complex. As a result of the different combinations of primers, nine different reactions were evaluated. A test was defined as positive only when the gene combinations were capable of co-amplifying both pathogens in a single reaction tube and showed distinguishable melting temperatures for each microorganism. According to the melting analysis, only three combinations of amplicons (senX3-regX3+bcsp31, senX3-regX3+IS711 and IS6110+IS711) were visible. Detection limits of senX3-regX3+bcsp31 and senX3-regX3+IS711 were of 2 and 3 genome equivalents for M. tuberculosis complex and Brucella while for IS6110+IS711 they were of 200 and 300 genome equivalents, respectively. The three assays correctly identified all the samples, showing negative results for the control patients. The presence of multicopy elements and GC content were the components most influencing the efficiency of the test; this should be taken into account when designing a multiplex-based SYBR Green I assay. In conclusion, multiplex real time PCR assays based on the targets senX3-regX3+bcsp31 and senX3-regX3+IS711 using SYBR Green I are highly sensitive and reproducible. This may therefore be a practical approach for the rapid differential diagnosis between extrapulmonary tuberculosis and complicated brucellosis.