4 resultados para Engineering geological mapping
Resumo:
Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.
Resumo:
Temporo-mandibular joint disc disorders are highly prevalent in adult populations. Autologous chondrocyte implantation is a well-established method for the treatment of several chondral defects. However, very few studies have been carried out using human fibrous chondrocytes from the temporo-mandibular joint (TMJ). One of the main drawbacks associated to chondrocyte cell culture is the possibility that chondrocyte cells kept in culture tend to de-differentiate and to lose cell viability under in in-vitro conditions. In this work, we have isolated human temporo-mandibular joint fibrochondrocytes (TMJF) from human disc and we have used a highly-sensitive technique to determine cell viability, cell proliferation and gene expression of nine consecutive cell passages to determine the most appropriate cell passage for use in tissue engineering and future clinical use. Our results revealed that the most potentially viable and functional cell passages were P5-P6, in which an adequate equilibrium between cell viability and the capability to synthesize all major extracellular matrix components exists. The combined action of pro-apoptotic (TRAF5, PHLDA1) and anti-apoptotic genes (SON, HTT, FAIM2) may explain the differential cell viability levels that we found in this study. These results suggest that TMJF should be used at P5-P6 for cell therapy protocols.
Resumo:
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2(nd) SRCR domain with susceptibility to MS (P max(T) permutation = 1×10(-4)). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. - CD4(+) naïve cells, P = 0.0001; CD8(+) naïve cells, P<0.0001; CD4(+) and CD8(+) central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4(+) and CD8(+) T cells.
Resumo:
Previously published scientific papers have reported a negative correlation between drinking water hardness and cardiovascular mortality. Some ecologic and case-control studies suggest the protective effect of calcium and magnesium concentration in drinking water. In this article we present an analysis of this protective relationship in 538 municipalities of Comunidad Valenciana (Spain) from 1991-1998. We used the Spanish version of the Rapid Inquiry Facility (RIF) developed under the European Environment and Health Information System (EUROHEIS) research project. The strategy of analysis used in our study conforms to the exploratory nature of the RIF that is used as a tool to obtain quick and flexible insight into epidemiologic surveillance problems. This article describes the use of the RIF to explore possible associations between disease indicators and environmental factors. We used exposure analysis to assess the effect of both protective factors--calcium and magnesium--on mortality from cerebrovascular (ICD-9 430-438) and ischemic heart (ICD-9 410-414) diseases. This study provides statistical evidence of the relationship between mortality from cardiovascular diseases and hardness of drinking water. This relationship is stronger in cerebrovascular disease than in ischemic heart disease, is more pronounced for women than for men, and is more apparent with magnesium than with calcium concentration levels. Nevertheless, the protective nature of these two factors is not clearly established. Our results suggest the possibility of protectiveness but cannot be claimed as conclusive. The weak effects of these covariates make it difficult to separate them from the influence of socioeconomic and environmental factors. We have also performed disease mapping of standardized mortality ratios to detect clusters of municipalities with high risk. Further standardization by levels of calcium and magnesium in drinking water shows changes in the maps when we remove the effect of these covariates.