2 resultados para Empirical Mode Decomposition, vibration-based analysis, damage detection, signal decomposition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of the adequacy of empirical therapy on outcome for patients with bloodstream infections (BSI) is key for determining whether adequate empirical coverage should be prioritized over other, more conservative approaches. Recent systematic reviews outlined the need for new studies in the field, using improved methodologies. We assessed the impact of inadequate empirical treatment on the mortality of patients with BSI in the present-day context, incorporating recent methodological recommendations. A prospective multicenter cohort including all BSI episodes in adult patients was performed in 15 hospitals in Andalucía, Spain, over a 2-month period in 2006 to 2007. The main outcome variables were 14- and 30-day mortality. Adjusted analyses were performed by multivariate analysis and propensity score-based matching. Eight hundred one episodes were included. Inadequate empirical therapy was administered in 199 (24.8%) episodes; mortality at days 14 and 30 was 18.55% and 22.6%, respectively. After controlling for age, Charlson index, Pitt score, neutropenia, source, etiology, and presentation with severe sepsis or shock, inadequate empirical treatment was associated with increased mortality at days 14 and 30 (odds ratios [ORs], 2.12 and 1.56; 95% confidence intervals [95% CI], 1.34 to 3.34 and 1.01 to 2.40, respectively). The adjusted ORs after a propensity score-based matched analysis were 3.03 and 1.70 (95% CI, 1.60 to 5.74 and 0.98 to 2.98, respectively). In conclusion, inadequate empirical therapy is independently associated with increased mortality in patients with BSI. Programs to improve the quality of empirical therapy in patients with suspicion of BSI and optimization of definitive therapy should be implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MALDI-TOF mass spectrometry is a diagnostic tool of microbial identification and characterization based on the detection of the mass of molecules. In the majority of clinical laboratories, this technology is currently being used mainly for bacterial diagnosis, but several approaches in the field of virology have been investigated. The introduction of this technology in clinical virology will improve the diagnosis of infections produced by viruses but also the discovery of mutations and variants of these microorganisms as well as the detection of antiviral resistance. This review is focused on the main current applications of MALDI-TOF MS techniques in clinical virology showing the state of the art with respect to this exciting new technology.